
PHYSICS 282 Spatiotemporal Biodynamics 

Homework #3 

Due Monday Nov 18, 2024 

[Note: Those not from math/physics background need not attempt problem(s) indicated by *] 

 
1. Relationship between the Consumer-Resource model and population dynamics model.  In 
class, we went over the dynamics in the chemostat. Describing the density of the organism by 
𝜌(𝑡) and the nutrient concentration in the chemostat by 𝑛(𝑡), the CR model for the system is  
 

𝜌̇ = 𝑟(𝑛) ⋅ 𝜌 − 𝜇𝜌, (1.1) 

𝑛̇ = 𝜇 ⋅ (𝑛! − 𝑛) − 𝑟(𝑛) ⋅ 𝜌/𝑌 (1.2) 
 
where 𝑟(𝑛) = 𝑟!	𝑛/(𝑛 + 𝐾) is the nutrient-dependent replication rate,  𝜇 is the dilution rate of 
the chemostat, 𝑛!𝜇 is the nutrient influx, and 𝑌 is the biomass yield.  
 
In this problem, you will derive the logistic equation which describes the dynamics of the 
population without referencing the nutrient,  
 

𝜌̇ = 𝑟̃𝜌 ⋅ (1 − 𝜌/𝜌4), (1.3) 
 
and obtain the effective replication rate (𝑟̃) and carrying capacity (𝜌4) in terms of the chemostat 
parameters (𝜇, 𝑛!) and the physiological parameters (𝑟!, 𝐾, 𝑌). Through this exercise, you will get 
a feel of the occurrence of “dimension reduction” (in this case, referring to a system with two 
degrees of freedom, 𝜌(𝑡) and 𝑛(𝑡) being reduced to a single degree of freedom 𝜌(𝑡)).  

(a) We shall work in a parameter region typical of chemostat operation, 𝜇 ≪ 𝑟!, for which we 
can linearize the replication rate, taking it to be 𝑟(𝑛) ≈ 𝑟!𝑛/𝐾 ≡ 𝜈𝑛. Using this linear form 
of 𝑟(𝑛), express the CR equations in terms of two dimensionless variables 𝑢 ≡ 𝑛/𝑛! and 𝑣 ≡
𝜌/𝜌!  (where 𝜌! ≡ 𝑛!𝑌 ), the dimensionless time variable, 𝜏 ≡ 𝑛!𝜈𝑡 , and a dimensionless 
parameter, 𝜂 ≡ 𝜇/(𝜈𝑛!). Sketch the two null clines and the fixed point (𝑢∗, 𝑣∗) for 𝜂 < 1 
(where a nontrivial steady state with 𝜌∗ > 0 exists). 

(b) Expand 𝑢, 𝑣 in the vicinity of the fixed point, i.e., for 𝑢 = 𝑢∗ + 𝑥 and 𝑣 = 𝑣∗ + 𝑦. For |𝑥| ≪
𝑢∗ and |𝑦| ≪ 𝑣∗, the equation of motion can be reduced to the following linear equation 
 

𝜆 D
𝑥
𝑦E = ℳ	 D

𝑥
𝑦E, (1.4) 

 
where 𝜆 is the eigenvalue. Workout the form of the matrix ℳ. From det(ℳ − 𝜆 ⋅ ℐ) = 0 
(where ℐ is the identity matrix), solve for the two eigenvalues in term of 𝜂. In one plot, sketch 
how the two eigenvalues depend on 𝜂 for 0 < 𝜂 < 1.  



(c) The more negative eigenvalue (denoted as 𝜆fast) describes the decay rate of the fast mode 
and the less negative eigenvalue (denoted as 𝜆slow) describes the decay rate of the slow mode. 
For 𝜂 > 0.5, what is the expression for 𝜆slow(𝜂)? To find the slow mode itself, use 𝜆*+,-(𝜂) 
in the linear equation (1.4) to obtain an equation relating 𝑥(𝑡)  and 𝑦(𝑡) ; this equation 
describes the slow mode. To see what this slow-mode means, re-express the equation for the 
slow mode in terms of 𝑢(𝑡) and 𝑣(𝑡), using the expressions for the fixed point 𝑢∗(𝜂) and 
𝑣∗(𝜂). Sketch the slow-mode in (𝑢, 𝑣) space along with the fixed point and the null clines. 
Next re-express the slow-mode for 𝑢(𝑡) and 𝑣(𝑡) in terms of the original variables 𝑛(𝑡) and 
𝜌(𝑡). Can you interpret the meaning of the slow mode now? 

(d) Over long time scales (after the fast mode has settled down), the two dynamical variables 
𝑛(𝑡) and 𝜌(𝑡) collapses onto the slow mode, such that the slow mode equation becomes a 
constraint, and the system is effectively that of a single variable. Use this constraint to express 
𝑛(𝑡) in term of 𝜌(𝑡), and substitute the resulting expression for 𝑛(𝑡) into Eq. (1.1) to obtain 
an effective equation for 𝜌(𝑡). Show that it is of the logistic form Eq. (1.3) and find the two 
parameters of the logistic equation, 𝑟̃ and 𝜌4 in terms of the original parameters of the system. 

(e) Comment on the range of 𝜂 for which derivation of the logistic equation (part (d)) breaks 
down. Given that large the separation of the two time scales (𝜆fast and 𝜆slow), the better is 
the derivation, what range of 𝜂 is the chemostat system best approximated by the logistic 
equation? what are the values of 𝑟̃ and 𝜌4  in this limit?  Can you come up with a general 
explanation for why the logistic equation is a good approximation of chemostat dynamics in 
this limit?  

2. Competition for nutrient. Two species described by densities 𝜌.(𝑡) and 𝜌/(𝑡) grow on the 
same nutrient source, of concentration 𝑛(𝑡). Suppose the growth rate of species 𝑖 is given by the 
Monod growth law, 𝑟0(𝑛) = 𝑟0,! ⋅ 𝑛/(𝑛 + 𝐾0), the death rate is 𝛿0, and the nutrient influx is 𝑗!. 
Find a criterion on the physiological parameters (𝑟0,!, 𝐾0 , 𝛿0) in order for species 𝑖 to survive in the 
steady state.  

3*. MacArthur’s model of resource competition. MacArthur’s model applied to 2-species (of 
densities 𝜌., 𝜌/) and 2 substitutable nutrients (of concentrations 𝑛2, 𝑛3) is   

𝜌̇. = (𝜈.2𝑛2 + 𝜈.3𝑛3) ⋅ 𝜌. − 𝛿.𝜌., (3.1) 

𝜌̇/ = (𝜈/2𝑛2 + 𝜈/3𝑛3) ⋅ 𝜌. − 𝛿/𝜌/, (3.2) 

𝑛̇2 = 𝛾2𝑛2 ⋅ (1 − 𝑛2/𝐾2) − (𝜈.2𝜌. + 𝜈/2𝜌/) ⋅ 𝑛2, (3.3) 

𝑛̇3 = 𝛾3𝑛3 ⋅ (1 − 𝑛3/𝐾3) − (𝜈.3𝜌. + 𝜈/3𝜌/) ⋅ 𝑛3 . (3.4) 

where 𝜈04  is the consumption matrix indicating the uptake preference of species 𝑖 for nutrient 𝛼, 
𝛿0  is the death rate of species 𝑖, and 𝛾4  is the generation rate, 𝐾4  is the concentration scale of 
nutrient 𝛼 in the habitat.  (The yield factor has been omitted for simplicity.) 

(a) Assume the existence of a non-trivial steady state with 𝑛2∗ , 𝑛3∗ , 𝜌.∗, 𝜌/∗ all being non-zero. From 
𝜌̇0/𝜌0 = 0 in Eqs. (3.1) and (3.2), show that in the limit the death rate 𝛿0 → 0, the steady state 
concentrations 𝑛4∗ → 0.  Using this result in Eqs. (3.3) and (3.4), show that 𝑛̇4/𝑛4 = 0 lead to the 
following equation for the steady state densities, 



S
𝜈.2 𝜈/2
𝜈.3 𝜈/3T ⋅ U

𝜌.∗
𝜌/∗
V = S

𝛾2
𝛾3T 

(b) Write down the solution of the above matrix equation for 𝜌.∗ and 𝜌/∗. Show that the feasibility 
condition, i.e., 𝜌.∗ > 0 and 𝜌/∗ > 0, can be written as two conditions between the environmental 
parameters 𝛾2, 𝛾3, and 𝑚0 ≡ 𝜈03/𝜈02, which describes the nutrient preference of species 𝑖. Plot 
the “ecological phase diagram” in the space (𝛾2, 𝛾3), marking clearly the region of coexistence, 
and the region of dominance/extinction.  

(c) For a fixed environment parameterized by 𝛾 ≡ 𝛾3/𝛾2 (which indicates the relative nutrient 
availability), plot the “physiological phase diagram” in the space (𝑚., 𝑚/) by indicating which 
regions of this space give coexistence, and which regions give dominance of species 1 or 2.  

(d) What is the ‘optimal’ value of 𝑚. that species 1 should take on to maximize its existence (i.e., 
survival) if it expects species 2 to take on a random value of 𝑚/? or if it expects species 2 to take 
on the ‘optimal’ value of 𝑚/? If the 𝑚 values of both species are close to this ‘optimal’ value, 
what would be the probability that one species becomes extinct if the environmental parameter 
𝛾  can take on a value within a finite range 𝛿  about a mean value, 𝛾̅  with equal probability? 
[Assume the environment can vary rapidly while 𝑚0, determined by genetics, is frozen over the 
scale of environmental variation.] What range of 𝑚0  should each species 𝑖 take on to maximize 
its existence in a fluctuating environment if it can coordinate with the other species which is also 
interested in maximizing its existence? What danger is there if the other species ‘cheats’? 
[Note: Your response to (d) is not expected to be quantitative.] 

4. Competition for essential nutrients.  The dependence of the growth of bacterial species 𝑖 on 
two essential nutrients A and B is given by 

𝑟0(𝑛2, 𝑛3) = U
1

𝜈02𝑛2
+

1
𝜈03𝑛3

V
5.

 

where 𝜈04  is the single-nutrient consumption efficiency (when the other nutrient is in saturation) 
and 𝑛4  is the concentration of nutrient 𝛼. Unlike substitutable nutrients, the uptake of nutrient 
𝛼 by species 𝑖 is given by 𝑟0 ⋅ 𝜌0/𝑌0,4, where 𝜌0  is the density of species 𝑖, and 𝑌0,4  is the yield of 
species 𝑖 for nutrient 𝛼. This leads to the following set of consumer-resource equations 

𝜌̇. = 𝑟.(𝑛2, 𝑛3) ⋅ 𝜌. − 𝜇𝜌., 

𝜌̇/ = 𝑟/(𝑛2, 𝑛3) ⋅ 𝜌/ − 𝜇𝜌/, 

𝑛̇2 = 𝜇 ⋅ (𝑛2! − 𝑛2) − 𝑟.(𝑛2, 𝑛3) ⋅ 𝜌./𝑌.,2 − 𝑟/(𝑛2, 𝑛3) ⋅ 𝜌//𝑌/,2, 

𝑛̇3 = 𝜇 ⋅ (𝑛3! − 𝑛3) − 𝑟.(𝑛2, 𝑛3) ⋅ 𝜌./𝑌.,3 − 𝑟/(𝑛2, 𝑛3) ⋅ 𝜌//𝑌/,3 	, 

for a chemostat-based system where 𝜇 is the dilution rate and 𝑛4!  is the inflow concentration of 
nutrient 𝛼.  In this problem, you will derive the feasibility conditions for this system using Tilman’s 
graphical approach.  

(a) Without solving the equations algebraically, sketch the conditions for 𝜌̇0 = 0 in the (𝑛2, 𝑛3) 
plane. Indicate the location of (𝑛2∗ , 𝑛3∗ ) where both 𝜌. and 𝜌/ are finite. On the plot, also mark  



the point (𝑛2!, 𝑛3!) which is proportional to the nutrient inflow. Next, find an algebraic expression 
for 𝑛2∗ , 𝑛3∗  in terms of the environmental and physiological parameters. [Hint: You can first use 
the matrix inversion formula for 𝑛45..]  

(b) Show the balance of nutrient fluxes at (𝑛2∗ , 𝑛3∗ )  graphically using a vector relation among the 
nutrient influx 𝐽! and the consumption fluxes 𝐽., 𝐽/, as done in class. Describe the condition for 
coexistence graphically, and write down the corresponding algebraic expression involving the 
constraint on 𝑛2!, 𝑛3! . 

(c) Show graphically what happens if (𝑛2!, 𝑛3!) lies outside of the constraint, and write down the 
algebraic expression for the steady-state concentrations 𝑛2∗ , 𝑛3∗  and densities 𝜌.∗, 𝜌/∗ 
corresponding to the two types of outcomes that would arise.  

(d) Describe and explain the difference of the behavior obtained here compared to the ones 
obtained in class for two substitutable nutrients. 

 

 


