$\begin{aligned}
\frac{d}{dt} \begin{bmatrix} x \\ y \end{bmatrix} &= \begin{bmatrix} -\gamma & -\gamma \\ x \begin{pmatrix} 1 \\ \gamma \end{pmatrix} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}; \text{ hook for } \begin{bmatrix} x \mid z \end{pmatrix} &= e^{\lambda z} \\ y \mid z \mid = e^{\lambda z} \end{bmatrix} \begin{bmatrix} -\gamma - \lambda & -\gamma \\ x \begin{pmatrix} 2 \\ y \end{pmatrix} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0
\end{aligned}$ Solve for X by taking det []=0 d= \$ A Spinel & C A<0 A Spinel & C A<0 A Spinel & C A<0 A Spinel & C A $\lambda^2 + \gamma \lambda + \alpha (1-\gamma) = 0$. $\chi = -\frac{\gamma}{2} \pm \sqrt{\left(\frac{\gamma}{2}\right)^2 - \alpha(1-\gamma)}$ $0 \qquad 1 \qquad \chi = S = \frac{1}{pc}$ $\Delta = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}^2 - \lambda(1-\frac{1}{2}) = 0$ $\rightarrow d_c = (l/2)^{-1/2}/(1-2)$ damped oscillation (Jonge P) (towards coexistence) (Jonge P) $\hat{f} \Delta < 0: \Lambda = -\frac{1}{2} \pm i \sqrt{|\Delta|}$ $\int \Delta > 0: \quad \lambda = -\frac{\gamma}{2} \pm \Delta < 0$ overdamped (swall p) < } (Slow approach to coexist) => Stable oscillation exhibited by the single Lotka-Voltena model (corresponding to \$ -200) is not vobust =) evistence vs exclination depends only on n = 8/FC Occurrence of (damped) oscillation also depend on d = 8/r. Note: if Re{23>0 and Im{23=0, and further if u and v are bounded, then obtain Stable limit cycle -> Will skow this occurs when Saturation of predation is included

from Eq. $0 \neq 0$: $dI = \frac{dI}{dt} = \frac{v \leq I - \delta I}{-r \leq I} = -1 + \frac{\delta}{rs}$ (7) integrate: $I(t) = \int ds'(-1+\frac{\delta}{rs'}) + const$ $= -S(t) + \sum_{r} ln S(t) + const$ =) $I(t) + S(t) - \frac{S}{r} \ln S(t) = I_0 + S_0 - \frac{S}{r} \ln S_0$ or $\frac{I(t)}{50} = 1 - \frac{S(t)}{50} + \frac{S}{50} \ln S(t)/50$ $J_{x}^{*} = \frac{S}{r} \alpha \frac{S_{x}^{*}}{S_{0}} = \frac{S}{rS_{0}} = \frac{1}{r_{0}}$ $J_{x}^{*} = \frac{S}{r} \alpha \frac{S_{x}^{*}}{S_{0}} = \frac{S}{rS_{0}} = \frac{1}{r_{0}}$ $J_{y}^{*} = \frac{1-S_{0}^{*}}{S_{0}} + \frac{S_{0}^{*}}{S_{0}} \ln \frac{S_{0}^{*}S_{0}}{1-S_{0}}$ $= \frac{1-S_{0}^{*}}{r_{0}} + \frac{S_{0}^{*}}{r_{0}} \ln \frac{S_{0}^{*}S_{0}}{r_{0}}$ $= \frac{1-S_{0}^{*}}{r_{0}} + \frac{S_{0}}{r_{0}} \ln \frac{S_{0}^{*}S_{0}}{r_{0}}$ $= \frac{1-S_{0}^{*}}{r_{0}} + \frac{S_{0}}{r_{0}} \ln \frac{S_{0}^{*}S_{0}}{r_{0}}$ & max infection: $\mathcal{R}^{I} = 0$ if $r_0 = 2.5$; then $\frac{5}{5_0} = \frac{1}{2.5} = 4070$; peak intection $\frac{7}{5_0} = 2370$ -> reed to infect 60% of pop to acquire herd immunity ast - 10, I - 30, S - 500. $S_{00} + R_{10} = S_{0}$ total infected: I total = So - Sio = Rio to find Sus. use Eq () + (3) $\frac{dS}{dR} = \frac{dS/dt}{dR/dt} = -\frac{rS}{S} \rightarrow S(t) = S_0 e^{-\frac{r}{S}R(t)}$

 $S_{10} = S_{2}e^{-\frac{c}{5}R_{0}} - \frac{c}{5}(s_{0} - s_{10}) + \frac{S_{10}}{S_{2}} = e^{-r_{0}(1 - \frac{S_{10}}{S_{2}})}$ (18) $\frac{1}{S_0} = 1 - \frac{S_{uo}}{S_0} = \chi \quad \rightarrow \quad 1 - \chi = e^{-r_0 \chi}$ • for $r_0 \gtrsim 1$, $r_0 = -\frac{ln(1-x)}{x} \simeq \frac{x+\frac{x}{2}}{x} = 1+\frac{x}{2}$ $\chi = \frac{I_{tor}}{S_0} = 2 \cdot (r_0 - 1) \qquad (00)_0 = 1 - \frac{S_{00}}{S_0} = \frac{S_{00}}{S_0} = \frac{S_{00}}{S_0} = \frac{S_{00}}{S_0} = \frac{S_{00}}{S_0}$ • for $r_0 >>1$. $\chi \simeq 1 - e^{-r_0}$ $500 - \frac{1}{11352.5}$ r_0 -> So not varishiply small $\begin{pmatrix} f_{0} & r_{0} = 2.5, \frac{5_{0}}{5_{0}} = c_{0} \end{pmatrix}$ $\begin{pmatrix} f_{0} & r_{0} = 2.5, \frac{5_{0}}{5_{0}} = c_{0} \end{pmatrix}$ $\begin{pmatrix} f_{0} & r_{0} = 2.5, \frac{5_{0}}{5_{0}} = c_{0} \end{pmatrix}$ Jur moderate ro-values. -> Infection Stops spreading due to removel, not lack of S. (2"had immity") not lack of S. = mitigation => main effect of reducing ru is to reduce I', not I total (Flattening curve) intervention strategy: $p_{cdl} = S_{0.5}$ Social distancing : reduce r rapid détection : increase S. -> reduces ro = r 50 -> flatten the curve !

Another strategy: immigation:

$$I(t) + S(t) - \frac{1}{2} \ln S(t) = I_0 + S_0 - \frac{1}{2} \ln S$$

$$S_0 = N \cdot (1-m); \quad m = \text{fraction of pop immensived.}$$

$$I(t) = (-m - \frac{5tt}{N}) - \frac{S}{rN} \ln \frac{S(t)}{N(1-m)}$$

$$\frac{rN}{N} = r_0 = 2.5 \text{ still.}$$

$$\frac{rN}{N} = r_0 = \frac{1}{rN} + \frac{1}{rN}$$

* prinetics: M=(0-1).8 (20) - early time: from dI = rSI-SI $\dot{I} \simeq I(t) \cdot (rS_0 - S), I(t) \simeq I_0 C$ estimate of m gives est of ro = 5 e.g. éf 5 days for symptoms to develop, then S= luz 52. forther, If I(t)/Io doubles every 2.5 days Hen at t=Sd. $I(5d) = 4 = e^{(\overline{b}_0 - 1) \cdot \delta \cdot 5d} = 2^{(r_0 - 1)}$ but estimate of I(t) often unreliable. more reliable is RIL): disgnossed and removed. $H_{q}(3): \quad dR = S \cdot I(t) = S \cdot (N - S(t) - R(t)) \quad Se^{-gR(t)}$ $dR = \delta \cdot (N - R - S_0 e^{-\frac{1}{\delta}R})$ $let = \frac{R(t)}{N}, \tau = \delta \cdot t, \quad S_0 = N - I_0 = N(1 - \varepsilon)$ $\mathcal{E} = I_0/N = 0^{\dagger}$ $\frac{\mathrm{T}(\mathrm{H})}{\mathrm{N}} = \frac{\mathrm{d}^{2}}{\mathrm{d}^{2}} = 1 - \frac{2}{\mathrm{d}^{2}} - (1-\frac{2}{\mathrm{d}^{2}}) e^{-\frac{1}{\mathrm{d}^{2}}}$ -> for roz «1 (early the or mild epidemics) $z = 7 - 2 - (1-2)(7 - 102 + \frac{1}{2}(102)^2)$ 0 >> <-> $= 2 + ((0-1)^2 - \frac{1}{2}(702)^2$

 $\frac{1}{N} = \frac{dz}{d\tau} = \frac{1}{2} \left(1 - \frac{1}{r_0} \right)^2 \operatorname{sech}^2 \left(\frac{r_0}{2} \right) \left(\tau - \frac{r_0}{2} \right)$ Soln: $T_0 = 2 + auh^{-1} (r_{o-1})^2$ $T_0 = 2 + auh^{-1} (r_{o-1})^2$ (200) \rightarrow perk value = $\frac{I}{N} = \frac{1}{2} \left(1 - \frac{1}{r_0} \right)^2 V$ -> occurs at time t'= tog = 5 for) for $r_0 - 1 = x \ll 1$. $T_0 = \frac{2}{x^2} \tanh x = \frac{2}{x}$ =) by reducing ro, peak time shifted to later time (i.e. mitigation) Ţ(t)/N ↑ I ~ ~ ~ $t^{a} = \frac{T_{0}}{\delta} \sim \frac{2}{S'(r_{0}-1)}$ > Noted defféciencies of the SIR model : - latency period : SSE→I→R - age Structure: r(a) Rexposed - asymptometie infection : heterogeneity in S - Spatial effect