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1. Phase diagram and phase transitions in dynamical systems
In class, we studied a model of growth and predation. Let the density of an organism be ρ(t). If the growth of the organism
is described by a logistic term and the e�ect of predation by a hyperbolic term, then the dynamics is given by the following
ODE:

dρ

dt
= rρ ·

(
1− ρ

ρ̃

)
− δ · ρ

1 + ρ
ρK

where r is the maximal replication rate and δ is the maximal predation rate. Of the two remaining parameters, ρ̃ describes
the carrying capacity and ρK describes the saturating density for predation.

Upon introducing dimensionless variables, u := ρ/ρ̃, τ := rt, the above equation becomes

du

dτ
= u(1− u)− αu

1 + u
κ

with two dimensionless parameters α := δ/r and κ = ρK/ρ̃.

(a) Write a general expression for the fixed point u∗(κ, α) at which du/dτ = 0, and show that the nature of the solution u∗

depends importantly on whether the relative predation rate α is smaller or larger than

αc(κ) =
1

2
+
κ

4
+

1

4κ

Show that αc(κ) has a single minimum at κ = 1. The point (κ = 1, α = αc(1) is called the “critical point” due to the
special behavior exhibited by the system in the vicinity of this point as we will see below.

Solution
The value u∗ at which du/dτ = 0 is obtained by solving:

0 = u∗(1− u∗)− αu∗

1 + u∗

κ

⇒ u∗(1− u∗) = αu∗

1 + u∗

κ

1
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One solution is u∗ = 0. Assuming u∗ 6= 0 and dividing by u∗ on both sides we get:

1− u∗ = α

1 + u∗

κ

⇒ (1− u)
(
1 +

u∗

κ

)
= α ⇒ 1 +

u∗

κ
− u∗ − (u∗)2

κ
= α ⇒

⇒ (u∗)2

κ
+ u∗

(
1− 1

κ

)
+ (α− 1) = 0 ⇒ (u∗)2 + u∗(κ− 1) + κ(α− 1) = 0

and the solution of this quadratic equation is:

u∗± =
−(κ− 1)±

√
(κ− 1)2 − 4κ(α− 1)

2
=

(1− κ)±
√
κ2 + 1− 2κ− 4κα+ 4κ

2
=

=
(1− κ)±

√
κ2 + 2κ− 4κα

2
=

(1− κ)±
√

(κ+ 1)2 − 4κα

2

So, values u∗ at which du/dτ = 0 are:

u∗0 = 0 u∗± =
(1− κ)±

√
(κ+ 1)2 − 4κα

2
(1)

Let’s consider the expression of u∗±: depending on the sign of (κ + 1)2 − 4κα, we might have two distinct
real solution (> 0), one degenerate1 real solution (= 0) or two complex conjugate solutions (< 0). The only
physically acceptable solutions in our systems are u∗ ≥ 0: in fact, u = ρ/ρ̃ where ρ̃ is a positive parameter and
ρ is the population density, which by definition cannot be negative.
Therefore, if (κ+ 1)2 − 4κα < 0 the only physically acceptable solution will be u∗ = 0. This happens when:

(κ+ 1)2 − 4κα < 0 ⇒ 4κα > (κ+ 1)2 ⇒ α >
2κ+ κ2 + 1

4κ
⇒

⇒ α >
1

2
+
κ

4
+

1

4κ
= αc(κ)

The physical meaning of this result is that when the predation rate is su�ciently larger than the replication rate
(remember that α = δ/r), then the population will not survive (i.e., the only possible equilibrium is u∗ = 0,
which is extinction). In other words, the replication rate must be su�ciently larger than the predation rate for
the system to be able to sustain a non-zero population.
Let us now find the minima of αc(κ):

dαc
dκ

= 0 ⇒ d

dκ

(
1

2
+
κ

4
+

1

4κ

)
= 0 ⇒

⇒ 1

4
− 1

4κ2
= 0 ⇒

⇒ 1

4κ2
=

1

4
⇒ κ2 = 1 ⇒ κ = ±1

However, κ is a positive parameter (κ = ρK/ρ̃, with both ρK and ρ̃ positive parameters), so the only acceptable
solution is κ = 1. To check that this is indeed a minimum, we evaluate the second derivative of αc(κ) in κ = 1:

d2αc
dκ2

∣∣∣∣
κ=1

=
d

dκ

(
1

4
− 1

4κ2

)∣∣∣∣
κ=1

= − 1

4
· −2
κ3

∣∣∣∣
κ=1

= −1

4
· −2
(1)3

=
2

4
=

1

2
> 0

1This is just the mathematical term to indicate two solutions of a quadratic equation with the same value.
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Here is a plot of αc(κ):

κ

αc(κ)

κ = 1

αc(1) = 1

(b) For κ = 1, find u∗(α) vs α. [Hint: there are two non-negative real values for u∗(α) for α < αc, and only one for
α > αc. Ignore any imaginary solutions which are irrelevant.] To see which of the fixed points is stable/unstable, plot
du/dτ vs u for κ = 1 and the following values of α: (i) α . αc(1), (ii) α = αc(1), (iii) α & αc(1). For each case,
plot the “flow”, i.e. the direction of du/dτ as arrows for di�erent regions of u. The type of phase transition which occurs
at the critical point here is called a “supercritical bifurcation”.
Solution
For κ = 1, the expression of the equilibria u∗ become (from Eq (1)):

u∗0 = 0 u∗± = ±
√
1− α

We can reject the negative solution (u∗ ≥ 0) and the complex solution (α > 1 = αc(1)), so in the end we have:

u∗0 = 0 u∗ =
√
1− α with α ≤ 1

This is the plot of u∗(α):

α

u∗(α)

αc = 1

If we now set κ = 1 in the equation of our system we get:

du

dτ
= u(1− u)− αu

1 + u

Let’s now plot du/dτ for three values of α as required and determine the stability of the equilibria with a
streamplot (i.e., a plot of the “flow”):

i. α . αc : we choose α = 0.95. The streamplot we obtain is the following:
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u

du/dτ

u∗ = 0

u∗ =
√
1− α

Therefore, u∗0 = 0 is an unstable equilibrium, while u∗ =
√
1− α is stable. As soon as the initial condition

is larger than 0, the population will always tend towards u∗ =
√
1− α

ii. α = αc : we have α = 1. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

Therefore, the only equilibrium u∗0 = 0 is stable (u∗ =
√
1− α =

√
1− 1 = 0). Whatever the ini-

tial condition, the population will always tend towards 0 (i.e., the populaton will ultimately always go to
extinction).

iii. α & αc : we choose α = 1.1. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

Therefore, also in this case the only equilibrium u∗0 = 0 is stable (u∗ =
√
1− α is not an acceptable

equilibrium in this case).

This is a supercritical pitchfork bifurcation. The bifurcation diagram is:
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α

u∗(α)

stable

unstable

stable

We can’t see the full “pitchfork” because we are restricting u∗ to non-negative values. To show that this is indeed
a supercritical bifurcation, we can expand the equation of the system around u∗ = 0:

du

dt
= u(1− u)− αu

(
1− u

κ
+
u2

κ2
+ · · ·

)
=

= u− u2 − αu+
α

κ
u2 − α

κ2
u3 + · · · =

= u(1− α)− u2
(α
κ
− 1
)
− α

κ2
u3 + · · ·

If we now set κ = 1 we are left with:

du

dτ
≈ u(1− α) + u2(α− 1)− αu3 (2)

Despite not having the same form of the “prototypical” example of supercritical bifurcation (i.e., ẋ = rx−x3),
the behavior of this system is qualitatively the same:

u

du/dτ

α > 1

u

du/dτ

α = 1

u

du/dτ

α < 1

(c) Sketch (i.e., plot the approximate dependence by hand, not by computer) the dependence of the stable fixed point u∗ in the
vicinity of the critical point αc(1). The robustness of the system can be characterized by the sensitvity of the density
u∗ to small changes in the environment. Let S := du∗/dα be a measure of the change in population density when the
predation rate changes. Sketch S(α) in the vicinity (i.e., on both sides) of the critical point, and describe the behavior in
words.
Solution
The dependence of the stable fixed point u∗ around αc is taken simply from the bifurcation diagram shown
above:
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α

u∗

αc

Where the curve on the left of αc is
√
1− α. Notice that u∗(α) is continuous but not smooth (i.e., not di�er-

entiable) in αc.
The sensitivity S(α) = du∗/dα will surely be equal to 0 for α > αc (since u∗(α) is constant for α > αc).
For α < αc, S(α) will always be negative (u∗ decreases as α increases), and will decrease tending to2 −∞ for
α→ αc:

α

S(α)

αc

Therefore, the sensitivity S(α) undergoes an abrupt, discontinuous change in α = αc.

(d) For κ = 1/2, show that there are three solutions for u∗(α) for a range of α at α0 ≤ α ≤ αc(1/2), where α0 is a
positive number you need to determine. To see which of the solutions are stable/unstable, plot du/dτ vs u for κ = 1/2
and the following values of α: (i) α . αc(1/2), (ii) α = αc(1/2), (iii) α & αc(1/2), (iv) α . α0, (v) α = α0, (vi)
α & α0. For each case, plot the “flow” as in (b). Indicate the stable and unstable fixed points which arise in each case. In
cases where there are multiple stable fixed points for the same value of α, what determines the value of u∗, the steady-state
density?
Solution
The general expression of the equilibria of the system is given by Eq (1):

u∗0 = 0 u∗± =
(1− κ)±

√
(κ+ 1)2 − 4κα

2

We will have three solutions if i) the two solutions u∗± are real (i.e. α < αc) and if ii) they are both non-negative.

2In fact, the derivative of
√
1− α is−(2

√
1− α)−1, which tends to−∞ for α→ 1
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This happens when the smaller solution, u∗−, is non-negative, i.e.:

(1− κ)−
√

(κ+ 1)2 − 4κα

2
≥ 0 ⇒ (1− κ)

2
≥
√

(κ+ 1)2 − 4κα

2
⇒

⇒ (1− κ) ≥
√

(κ+ 1)2 − 4κα ⇒ (1− κ)2 ≥ (k + 1)2 − 4κα ⇒

⇒ 1 + κ2 − 2κ ≥ 1 + κ2 + 2κ− 4κα ⇒ 4κα ≥ 4κ ⇒ α ≥ 1 := α0

Therefore, we will have three distinct solutions for 1 ≤ α ≤ αc(1/2) = 9/8 = 1.125.

Let’s now plot du/dτ for κ = 1/2 and the required values of α to determine the stability of the equilibria with
a streamplot:

i. α . α0: we choose α = 0.95. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

u∗+ = 1
4(1 +

√
9− 8α)

so we have one unstable equilibrium at u∗ = 0 and one stable one at u∗+ > 0. As soon as the initial
condition is larger than 0, the population will tend towards u∗+.

ii. α = α0: we have α = 1. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

u∗+ = 1
2

and so the situation is the same as the previous point.
iii. α & α0: we choose α = 1.05. The streamplot we obtain is the following:
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u

du/dτ

u∗ = 0

u∗− = 1
4(1−

√
9− 8α)

u∗+ = 1
4(1 +

√
9− 8α)

Now a new equilibrium has emerged, and u∗ = 0 is now stable. Therefore, if the initial condition is
0 < u(0) < u∗−, the system will end up in u∗ = 0; in other words, if the initial population is smaller
than a threshold (u∗−), the population will die out. On the other hand, if u(0) > u∗−, the population will
always tend towards u∗+. This population size e�ect (i.e., the fact that in order to have a non-zero stationary
population the initial population must be larger than a threshold) is known as the Allee e�ect.

iv. α . αc(1/2): we choose α = 1.12. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

u∗− = 1
4(1−

√
9− 8α) u∗+ = 1

4(1 +
√
9− 8α)

The situation is the same as before; the two equilibria u∗± > 0 are approaching each other.
v. α = αc(1/2): we have α = 1.125. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

u∗+ = 1
4

The two equilibria u∗ > 0 have now merged into a saddle point. If the initial population is u(0) > u∗+,
the system will slowly tend towards u∗+, but as soon as the population is pushed below u∗+ it will go to
extinction.

vi. α & αc(1/2): we choose α = 1.13. The streamplot we obtain is the following:

u

du/dτ

u∗ = 0
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Now the only possible equilibrium is u∗ = 0, and so the population will go to extinction independently of
the initial condition.

(e) For the nonzero stable fixed point u∗ obtained in (d), use Taylor expansion to obtain the leading dependence on α in the
vicinity of αc(1/2) and in the vicinity of α0. From these results, obtain the sensitivity S(α) of this fixed point and
sketch both u∗(α) and S(α) in the vicinity of α0. The type of phase transition which occurs at αc(1/2) is called a
“saddle-point bifurcation”, while the phase transition which occurs at α0 is called a “subcritical bifurcation”. Describe in
words how they are di�erent from each other and from the supercritical bifurcation encountered in (b).
Solution
The expression of the non-zero fixed point is:

u∗± =
(1− κ)±

√
(κ+ 1)2 − 4κα

2

By plugging κ = 1/2 we get:

u∗± =
1− 1/2±

√
(1/2 + 1)2 − 4α · 1/2

2
=

1/2±
√
(3/2)2 − 2α

2
=

1

4
± 1

2

√
9

4
− 2α =

=
1

4
± 1

2

√
9− 8α

4
=

1

4
± 1

2
· 1
2

√
9− 8α =

1

4
(1±

√
9− 8α)

The bifurcation diagram (i.e., the plot of the dependence of u∗ on α) is the following:

α

u∗

α0 αc(1/2)

Therefore, at αc(1/2) a new fixed point emerges, and splits into two fixed points for α . αc(1/2). Further-
more, the absolute value of the derivative S(α) = du∗/dα diverges to∞ for3 α→ αc(1/2)

−:

|S(α)| =
∣∣∣∣du∗dα

∣∣∣∣ = ∣∣∣∣14(1 +√9− 8α)

∣∣∣∣ = ∣∣∣∣− 1√
9− 8α

∣∣∣∣ = 1√
9− 8α

α→αc(1/2)−−−−−−−→ +∞ (3)

and so a Taylor expansion around αc(1/2) is not possible. The plot of |S(α)| is the following:

α

|S(α)|

αc(1/2)

3The expression “α→ αc(1/2)
−” means that α is approaching αc(1/2) “from below”, i.e. from values smaller than αc(1/2).
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On the other hand, u∗+(α) and S(α) are continuous and di�erentiable at α0 = 1, so we can perform a Taylor
expansion around that point. Expanding u∗+:

u∗+ =
1

4
(1 +

√
9− 8α) =

= u∗+(α = 1) +
du∗+
dα

∣∣∣∣
α=1

(α− 1) +
1

2

d2u∗+
dα2

∣∣∣∣
α=1

(α− 1)2 +
1

6

d3u∗+
dα3

∣∣∣∣
α=1

(α− 1)3 + · · · =

=
1

4
(1 +

√
9− 8α)

∣∣∣∣
α=1

+

(
− 1

9− 8α

)∣∣∣∣
α=1

(α− 1) +
1

2
·
[
− 4

(9− 8α)3/2

]∣∣∣∣
α=1

(α− 1)2+

+
1

6
·
[
− 48

(9− 8α)5/2

]∣∣∣∣
α1

(α− 1)3 + · · · =

=
1

2
+(−1)(α−1)+1

2
·(−4)(α−1)2+1

6
·(−48)(α−1)3+· · · = 1

2
−(α−1)−2(α−1)2−8(α−1)3+· · ·

Neglecting all terms beyond leading order in α we get:

u∗ =
3

2
− α

If we now consider u∗−(α), this functon will be continuous but not smooth4 inα0. The expansion must therefore
be written separately for α . α0 and for α & α0:

u∗− ≈

0 α < α0

u∗−(α = 1) +
du∗−
dα

∣∣∣
α=1

(α− 1) + · · · α > α0
⇒ u∗− ≈

{
0 α < α0

(α− 1) α > α0

The first important di�erence between these two transitions is that the transition at α0 is continuous, while
the one at αc(1/2) is discontinuous.

The di�erence between the subcritical bifurcation found here and the supercritical bifurcation found in (b) is
that in this case as the parameterα is changed an unstable equilibrium (u∗0 = 0) “splits” into multiple equilibria,
while in a supercritical bifurcation it is a stable equilibrium that “splits” into more.

(f) For κ = 2, show that there are two non-negative solutions u∗(α) for α < α1, where α1 is a number smaller than αc(2),
and one solution for α > α1. Determine which of the fixed points is stable by plotting du/dτ vs u for κ = 2 and the
following values of α: (i) α . α1. (ii) α = α1, (iii) α & α1. For each case, plot the “flow” and indicate the stable and
unstable fixed points as above. Using Taylor expansion, find the leading dependence of the stable fixed point u∗ on α in
the vicinity of α1. From this result, find the sensitivity S(α), and sketch u∗(α), S(α) in the vicinity of α1. The phase
transition which occurs at α1 is called a “transcritical bifurcation”. Describe in words again how it is di�erent from the
bifurcations encountered in (b) and (e)
Solution

4We are looking at the “merging” of the unstable branch into the equilibrium u∗ = 0 in the bifurcation diagram above.
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For κ = 2, the expression of the non-zero fixed points is:

u∗± =
(1− κ)±

√
(κ+ 1)2 − 4κα

2

∣∣∣∣∣
κ=2

=
−1±

√
32 − 4 · 2 · α
2

=
1

2
(−1±

√
9− 8α)

Now, u∗− is always negative and so the only two possible equilibria are u∗0 = 0 and u∗+. This last fixed point will
be non-negative when5:

1

2
(−1 +

√
9− 8α) ≥ 0 ⇒

√
9− 8α > 1 ⇒ 9− 8α ≥ 1 ⇒ −8α ≥ −8 ⇒ α ≤ 1 := α1

Therefore, we have two non-negative solutions (u∗0 and u∗+) for α < α1 and only one solution (u∗0) for α > α1.

Let’s now plot du/dτ for the three values of α as required and determine the stability of the equilibria with a
streamplot:

i. α . α1 : we choose α = 0.95. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

u∗+ = 1
2(−1 +

√
9− 8α)

Therefore, u∗0 = 0 is an unstable equilibrium, while u∗+ is stable. As soon as the initial condition is larger
than 0, the population will tend towards u∗+.

ii. α = α1 : we have α = 1. The streamplot we obtain is the following:

u

du/dτ

u∗0 = 0

The only equilibrium, u∗0 = 0 is stable. Whatever the initial condition, the population will always go to
extinction.

iii. α & α1 : we choose α = 1.1. The streamplot we obtain is the following:

5Notice: the fact that α1 = α0 is just a coincidence.
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u

du/dτ

u∗0 = 0

Like in the previous case, the only equilibrium u∗0 = 0 is stable.

The bifurcation diagram is the following:

α

u∗

stable
unstable

and so the dependence of the stable fixed point u∗+ on α is:

α

u∗

α1

where the curve on the left of α1 is 1
2(−1 +

√
9− 8α). This curve is not smooth in α1, so we have again to

write the Taylor expansion for α < α1 and α > α1 separately. We get:

u∗+ ≈

{
−2(α− 1) α < α1

0 α > α1

Therefore, in this case the sensitivity S(α), while still being discontinuous, does not diverge for α→ α−1 :

S =
du∗

dα
=

d

dα

1

2
(−1 +

√
9− 8α) = − 2√

9− 8α

α→α−
1−→ −2
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α

S(α)

α1

−2

The di�erence between this transcritical bifurcation and the subcritical and saddle-point bifurcations encoun-
tered before are the following:

• A transcritical bifurcation is continuous, like a subcritical one and unlike a saddle-point bifurcation
• The sensitivity in a transcritical bifurcation is discontinuous but it does not diverge close to the critical

point
• Subcritical (and also supercritical) bifurcations and saddle-point bifurcations involve the creation/destruction

of fixed points. In a transcritical bifurcation, on the other hand, two fixed points cross each other, “exchang-
ing” their stability. In this particular system we can’t see the full picture because u∗ > 0. If we also allow
u∗ to be negative, the bifurcation diagram in the vicinity of α1 looks like this:

α

u∗

α1 stable
unstable

(g) Based on the results obtained in (a)-(f) above, sketch the phase diagram in the parameter space (κ.α) as follows: draw the
line (actually a curve)αc(κ) and put down the special points (κ, α) = (1, αc(1)), (1/2, αc(1/2)), (1/2, α0), (2, α1).
With the additional knowledge that the critical values α0 and α1 are κ-independent (you don’t need to derive this), you
can obtain 2 lines that divide the entire parameter space into three distinct regions. Show the two lines in the space of
(κ, α) and give a verbal description of the three “phases” separated by these lines. Indicate the nature of phase transitions
(bifurcations) upon crossing each line separating the three phases.
Solution
Let’s call the special points:

a = (1, αc(1)) = (1, 1) b =

(
1

2
, αc

(
1

2

))
=

(
1

2
,
9

8

)

c =

(
1

2
, α0

)
=

(
1

2
, 1

)
d = (2, α1) = (2, 1)

and plot them together with αc(κ) (and a few lines for reference):

13



κ

α

a
b

c d

(1/2, 0)(1, 0) (2, 0)

(0, 1)

Let’s now use all the information we have gathered in the previous points to understand how does the phase
diagram look:

• If we move along any of the the segments (1/2, 0) → c, (1, 0) → a and (2, 0) → d, we have that the
fixed points of the system are u∗0 and u∗+; we are in the situation where as soon as the initial condition is
u(0) > 0, the system will tend towards u∗+. Therefore, we can infer that in the whole region α < 1 the
system exhibits a nontrivial equilibrium u∗+, to which the population will always tend to if u(0) > 0. We
call this phase S for “survival”:

κ

α

S

• Above the curve outlined by αc(κ), the only possible fixed point is u∗0. In this area of the parameter space
the population wil always go to extinction, no matter the initial condition. If we move on the segment
(2, 0)→ d this is also true between d and the curve αc(κ). Therefore, this will happen in all the area of the
parameter space that is between the curve αc(κ) and the region S. We call this phase E for “extinction”:
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S

E

κ

α

• Finally, if we move along the segment c→ b the system will exhibit the Allee e�ect (i.e., we needu(0) > u∗−
in order to have a non-zeo stationary population). We call this phase A from “Allee”:

S

E

A

κ

α

Therefore, the phase diagram of the system (and the two lines that divide it into three regions) are:
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S

E

A

κ

α

κ = 1

The transition S ←→ A is a subcritical bifurcation and the transition A←→ E is a saddle-point bifurcation.
Finally, the transition S ←→ E for κ = 1 is a supercritical bifurcation while for κ > 1 is a transcritical
bifurcation.

2. Oscillatory genetic circuit
A genetic circuit in a cell involves two transcription factors, an “activator” and a “repressor”. The activator activates the
expression of itself and the repressor, while the repressor represses the expression of the activator. This circuit is known as
the “predator-prey” circuit. Denoting the concentrations of the activator and the repressor by [A] and [R], respectively, we
can write down a simple set of equations describing their dynamics:

d[A]

dt
= αA

[A]

[A] +KA
· KR

[R] +KR
− µ[A]

d[R]

dt
= αR

[A]

[A] +KA
− µ[R]

In the above, the parameters KA and KR are the dissociation constant for the binding of the activator and the repressor
to the promoter regions, respectively, αA and αR characterize the activity of the two promoter, and µ is the rate of cell
growth (which serves here to dilute the concentrations of the transcription factors). In this problem, you will find conditions
under which this circuit sustains oscillation.

(a) Make these equations dimensionless using u = [A]/KA, v = [R]/KR, and τ = µt. Write down the dependences of the
two remaining dimensionless parameters, σA ∝ αA and σR ∝ αR, in terms of the original parameters of the problem.
Solution
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Let’s first consider the equation for [A], and plug in it [A] = uKA, [R] = vKR and t = τ/µ:

d

d(τ/µ)
(uKA) = αA

uKA

uKA +KA
· KR

vKR +KR
− µuKA ⇒

⇒ µKA
du

dτ
= αA

u

u+ 1
· 1

v + 1
− µuKA ⇒

⇒ du

dτ
=

αA
µKA

· u

u+ 1
· 1

v + 1
− u

We can therefore define σA := αA/(µKA) (note that σA ∝ αA). Similarly, for [R] we get:

d

d(τ/µ)
(vKR) = αR

uKA

uKA +KA
− µvKR ⇒

⇒ µKR
dv

dt
= αR

u

u+ 1
− µvKR ⇒

⇒ dv

dτ
=

αR
µKR

· u

u+ 1
− v

and we can define σR := αR/(µKR) (note that σR ∝ αR). This way, the equations of our system become:

du

dτ
= σA

u

u+ 1
· 1

v + 1
− u dv

dτ
= σR

u

u+ 1
− v

Notice that, by definition, both σA > 0 and σR > 0 (αA, αR, KA, KR and µ are all positive parameters).

(b) In (u, v) space, sketch the two null clines (i.e., the relation between u and v that makes du/dτ = 0 or dv/dτ = 0).
Indicate each sub-regions of (u, v) space partitioned by the two null clines whether du/dτ and dv/dτ are positive or
negative. Sketch qualitatively the “flow” of u and v by arrows in the (u, v) space.

Solution
In order to make it easier to plot them, we express the null clines as v = · · · . From the equation for uwe obtain:

du

dτ
= 0 ⇒ σA

u

u+ 1
· 1

v + 1
= u

Therefore, one possible solution is u = 0. Assuming u 6= 0 and dividing by u on both sides:

σA
1

u+ 1
= v + 1 ⇒ v = σA

1

u+ 1
− 1

and du/dτ is positive when v is smaller than this expression. Therefore, the plot of this nulllcline and of the
regions where du/dτ is positive/negative is the following:
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u

v

(0, σA − 1)

(σA − 1, 0)

u̇ > 0

u̇ < 0

From the equation for v we obtain:

dv

dτ
= 0 ⇒ σR

u

u+ 1
= v ⇒ v = σR

u

u+ 1

and dv/dτ is positive when v is smaller than this expression. Therefore, the plot of this nulllcline and of the
regions where dv/dτ is positive/negative is the following:

u

v

v̇ > 0

v̇ < 0
(0, σR)

The combined plot of both null clines is:

u

v

u̇ < 0

v̇ < 0

u̇ > 0

v̇ < 0

u̇ > 0

v̇ > 0

u̇ < 0

v̇ > 0
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Therefore, the qualitative flow of the system is the following:

u

v

The solutions of this system will oscillate around the nontrivial fixed point of the system (which is the intersec-
tion of the two null clines). It remains to be seen if the solutions spiral away from or towards this point, or if they
go around it in closed orbits (the qualitative analysis we’re doing here does not allow us to distinguish between
these cases).

(c) Find the fixed point(s) (u∗, v∗) where du/dτ = 0 and dv/dτ = 0. Show conditions on the parameters σA and σR
in order for there to be a “nontrivial” fixed point u∗ > 0 and v∗ > 0. Obtain how the nontrivial fixed point (u∗, v∗)
depends on the parameters (σA, σR).
Solution
In order to find the nontrivial fixed points (i.e., with u∗, v∗ 6= 0), we must solve:

σA
u∗

u∗ + 1
· 1

v + 1
− u∗ = 0 σR

u∗

u∗ + 1
− v∗ = 0 (4)

which corresponds to finding the intersection point of the null clines shown above. From the first equation in
(4) we get:

σA
u∗

u∗ + 1
· 1

v + 1
= u∗ ⇒ u∗ =

σA
v∗ + 1

− 1 (5)

where in we have divided by u∗ on both sides since we assuming u∗ 6= 0. From the second equation in (4) we
get simply:

v∗ = σR
u∗

u∗ + 1

Substituting u∗ from equation (5) we get:

v∗ = σR

(
σA

v∗ + 1
− 1

)
v∗ + 1

σA
=
σR
σA

(σA − v∗ − 1) = σR −
σR
σA

v∗ − σR
σA

⇒

⇒ v∗
(
1 +

σR
σA

)
= σR

(
1− 1

σA

)
⇒ v∗(σA + σR) = σR(σA − 1) ⇒ v∗ =

σR(σA − 1)

σA + σR
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If we now plug this expression of v∗ into u∗ from equation (5), we get:

u∗ =
σA

σRσA−σR
σA+σR

+ 1
− 1 =

σA
σRσA − σR + σA + σR

(σA + σR)− 1 =
σA

σRσA + σA
(σA + σR)− 1 =

=
σA

σA(σR + 1)
(σA + σR)− 1 =

σA + σR
σR + 1

− 1 =
σA + σR − σR − 1

σR + 1
=
σA − 1

σR + 1

Therefore, the general expression of the nontrivial fixed point of the system is:

(u∗, v∗) =

(
σA − 1

σR + 1
,
σR(σA − 1)

σA + σR

)
In order for this fixed point to be really nontrivial, we need that the parameters σA and σR are such that u∗ > 0
and v∗ > 0. Therefore, we need:

u∗ > 0 ⇒ σA − 1

σR + 1
> 0 ⇒ σA > 1

(since σR > 0) and:

v∗ > 0 ⇒ σR(σA − 1)

σA + σR
⇒ σA > 1

(since again σR > 0). Therefore, we need σA > 1 in order to have u∗, v∗ > 0.
(d) In the vicinity of the nontrivial fixed point obtained in (c), use Taylor expansion to linearize the dynamical equations for

x(t) = u(t)− u∗, y(t) = v(t)− v∗. Find the two eigenvalues λ for the linearized system.
Solution
First of all, we can rewrite our system as:

d~z

dτ
= f(~z) (6)

where:

~z =

(
u
v

)
f(~z) =

(
f1(~z)
f2(~z)

)
=

(
σA

u
u+1 ·

1
v+1 − u

σR
u
u+1 − v

)
This way, the linearization of our system around (u∗, v∗) looks like:

d~z

dτ
= f(~z∗) + J(~z∗)(~z − ~z∗)

where we are neglecting all terms beyond the first order, andJ(~z∗) is the jacobian matrix of the system computed
in ~z∗ = (u∗, v∗):

J(~z∗) =

∂f1
∂u

∂f1
∂v

∂f2
∂u

∂f2
∂v

∣∣∣∣∣∣
(u∗,v∗)

Let’s compute the partial derivatives:

∂f1
∂u

∣∣∣∣
(u∗,v∗)

=
∂

∂u

(
σA

u

u+ 1
· 1

v + 1
− u
)∣∣∣∣

(u∗,v∗)

= σA

(
1

u+ 1
− u

(u+ 1)2

)
1

v − 1
− 1

∣∣∣∣
(u∗,v∗)

=

=
σA

(u∗ + 1)2(v∗ + 1)
− 1 = · · · = 1− σA

σA + σR
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∂f1
∂v

∣∣∣∣
(u∗,v∗)

=
∂

∂v

(
σA

u

u+ 1
· 1

v + 1
− u
)∣∣∣∣

(u∗,v∗)

= −σA
u∗

u∗ + 1
· 1

(v∗ + 1)2
− u∗ =

= · · · = (σA + σR)(1− σA)
σA(σR + 1)2

∂f2
∂u

∣∣∣∣
(u∗,v∗)

=
∂

∂u

(
σR

u

u+ 1
− v
)∣∣∣∣

(u∗,v∗)

=
σR

(u∗ + 1)2
= · · · = σR(σR + 1)2

(σA + σR)2

∂f2
∂v

∣∣∣∣
(u∗,v∗)

=
∂

∂v

(
σR

u

u+ 1
− v
)∣∣∣∣

(u∗,v∗)

= −1

Therefore, we have:

J(~z∗) =


1−σA
σA+σR

(σA+σR)(1−σA)
σA(σR+1)2

σR(σR+1)2

(σA+σR)2
−1


and we can write the linearization of the system around (u∗, v∗) as:dx/dτ

dy/dτ

 =


1−σA
σA+σR

(σA+σR)(1−σA)
σA(σR+1)2

σR(σR+1)2

(σA+σR)2
−1


x
y


If we call for simplicity:

A =
1− σA
σA + σR

B =
(σA + σR)(1− σA)

σA(σR + 1)2
C =

σR(σR + 1)2

(σA + σR)2

the eigenvalues of the linearized system are found by solving:

det

[(
A B
C −1

)
−
(
λ 0
0 λ

)]
= 0 ⇒ det

(
A− λ B
C −(λ+ 1)

)
= 0 ⇒

⇒ −(A − λ)(λ + 1) − BC = 0 ⇒ λ2 + λ(1 − A) − BC − A = 0 The 

solution of this quadratic equation is given by:

λ± =
1

2

[
−(1−A)±

√
(1−A)2 − 4(BC −A)

]
= · · ·

· · · = 1

2(σA + σR)

[
1− 2σA − σR ±

√
1 + σR(6− 4σA) +

(
4

σA
− 3

)
σ2R

]
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(e) Based on whether the eigenvalues λ found in (d) has nonzero imaginary component, and whether the real component of λ is
positive or negative, find regions of the parameter space (σA, σR) where you expect the circuit to exhibit stable oscillation,
damped oscillation, or stable coexistence.
Solution
Let us first determine under which conditions Reλ± > 0. This happens when:

1− 2σA − σR
2(σA + σR)

> 0 ⇒ 1− 2σA − σR > 0 ⇒ σR < 1− 2σA

However, we always have 1 − 2σA < 0 because σA > 1 (notice that we can’t even have Reλ± = 0 because
of the same reason). Therefore, this inequality can’t be solved (σR > 0 by defintion) and we will always have
Reλ± < 0: the nontrivial equilibrium (u∗, v∗) is always stable, and all the initial conditions (whether they
oscillate or not) will tend towards it.

Let us then determine under which conditions there are oscillations at all. The system will exhibit oscillations
if Imλ± 6= 0, which happens if6:

g(σR) := σ2R

(
4

σA
− 3

)
+ σR(6− 4σA) + 1 < 0

The function g(σR) is a parabola, and therefore:

• if it is convex (i.e., the sign of what multiplies σ2R is positive, therefore 3 − 4/σA > 0 ⇒ σA < 4/3),
g(σR) < 0 if σR is in the region between the two zeroes of the parabola

• if it is concave (i.e., the sign of what multiplies σ2R is negative, therefore 3− 4/σA < 0 ⇒ σA > 4/3),
g(σR) < 0 if σR is smaller than the smallest zero or largest than the largest zero of the parabola

σR

g(σR)

The parabola is convex, σA < 4/3

σR

g(σR)

The parabola is concave, σA > 4/3

The zeroes of a parabola described by g(σR) are:

σ±R =
3σA − 2σ2A ± 2

√
σA(σA − 1)3

3σA − 4

Therefore, for a convex parabola we have:

σA <
4

3
σ−R < σR < σ+R

6Remember: in order for the eigenvalues λ± to have a nonzero imaginary part, the term in their expression under the square root
(i.e., the discriminant) must be negative.
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while for a concave one:
σA >

4

3
σR < σ−R and σR > σ+R

Looking at, the expression of σ±R , σA(σA − 1)3 is positive for σA < 0 and σA > 1. Since we are assuming
σA > 1, the content of the square root is always positive and so σ±R are both real. We therefore need to check
when σ±R are both positive. Since σ−R < σ+R , we can first check when7 σ−R > 0:

σ−R =
3σA − 2σ2A − 2

√
σA(σA − 1)3

3σA − 4
> 0 ⇒

{
3σA − 4 > 0

3σA − 2σ2A − 2
√
σA(σA − 1)3 > 0

The first equation yields σA > 4/3. This means that σ−R could be positive only when the parabola is concave.
Solving the second equation:

3σA − 2σ2A > 2
√
σA(σA − 1)3 ⇒ (3σA − 2σ2A)

2 > 4σA(σA − 1)3 ⇒

⇒ 9σ2A + 4σ4A − 12σ3A > 4σA(σ
3
A − 3σ2A + 3σA − 1) = 4σ4A − 12σ3A + 12σ2A − 4σA ⇒

⇒ 3σ2A − 4σA < 0 ⇒ σA(3σA − 4) < 0

This last inequality is true if σA > 0 and 3σA − 4 < 0 ⇒ σA < 4/3. Thus:

σ−R > 0 ⇒

{
σA > 4/3

σA < 4/3

This means that the inequality σ−R > 0 does not have any solution: σ−R < 0 for any value of σA.

Similarly, we can check when σ+R > 0:

σ+R =
3σA − 2σ2A + 2

√
σA(σA − 1)3

3σA − 4
> 0 ⇒

{
3σA − 4 > 0

3σA − 2σ2A + 2
√
σA(σA − 1)3 > 0

⇒

⇒

{
σA > 4/3

2
√
σA(σA − 1)3 > 2σ2A − 3σA

Solving the second equation:

4σA(σ
3
A − 3σ2A + 3σA − 1) = 4σ4A − 12σ3A + 12σ2A − 4σA > 4σ4A + 9σ2A − 12σ3A ⇒

⇒ 3σ2A − 4σA > 0 ⇒ σA(3σA − 4) > 0

This inequality is true if σA > 0 and 3σA − 4 > 0 ⇒ σA > 4/3, and so:

σ+R > 0 ⇒

{
σA > 4/3

σA > 4/3
⇒ σA >

4

3

Therefore:
7Because in that case we know that both σ±

R > 0. If σ−
R < 0 we could still have either σ+

R > 0 or σ+
R < 0.
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– For σA < 4/3 (i.e., the parabola is convex), σ±R < 0

– For σA > 4/3 (i.e., the parabola is concave), σ−R < 0 and σ+R > 0

Therefore, the system will exhibit oscillations (i.e., g(σR) < 0 ⇒ Imλ± 6= 0) only when:

σA >
4

3
and σR > σ+R =

3σA − 2σ2A + 2
√
σA(σA − 1)3

3σA − 4

On the other hand, the system will not exhibit oscillations (i.e., g(σR > 0) ⇒ Imλ± = 0) when:

σA <
4

3
or σA >

4

3
and σR ≤ σ+R =

3σA − 2σ2A + 2
√
σA(σA − 1)3

3σA − 4

The phase diagram of the system is the following:

D.O.S.C.

σA

σR

(4/3, 0)(1, 0)

In phase S.C. (which includes the line that separates the two phases) the system exhibits stable coexistence (i.e.,
Reλ± < 0, Imλ± = 0): there are no oscillations and therefore the solutions will simply tend towards the
nontrivial fixed point (u∗, v∗). In phaseD.O., on the other hand, the solutions will also oscillate and therefore
the system will exhibit damped oscillations (i.e., Reλ± < 0, Imλ± 6= 0). There are no regions in the parameter
space where the system exhibits stable oscillations (i.e., Reλ± = 0, Imλ± 6= 0).

3. Rock-scissor-paper game
This classic “game” insolves three species R, S and P interacting in a population. S stimulates the growth of R while
P stimulates the death of R. Also, P stimulates the growth of S while R stimulates the death of S, and R stimulates
the growth of P while S stimulates the death of P . Let p1, p2, p3 denote respectively the frequency of R, S, P in a
population, with p1 + p2 + p3 = 1. In the simplest case where the gain (cost) of winning (losing) is unity, the dynamics
of the system is governed by the following ODES:

dp1
dt

= p1 · (p2 − p3)

dp2
dt

= p2 · (p3 − p1)
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dp3
dt

= p3 · (p1 − p3)

In this problem, you will work out the conditions under which the R-S-P game sustains oscillations.

(a) Show that the above equations admit a conserved quantity, p1p2p3 := C , where C is a positive constant fixed by the
initial condition, i.e. C = p1(0) · p2(0) · p3(0).
Solution
In order to show that C = p1p2p3 is conserved, we simply have to verify that its time derivative is null, i.e.
dC/dt = 0:

dC

dt
=

d

dt
(p1p2p3) =

dp1
dt
· p2p3 + p1

d

dt
(p2p3) =

= ṗ1p2p3 + p1(ṗ2p3 + p2ṗ3) = ṗ1p2p3 + p1ṗ2p3 + p1p2ṗ3 =

= p1(p2 − p3)p2p3 + p1p2(p3 − p1)p3 + p1p2p3(p1 − p2) =

= (p1p2 − p1p3)p2p3 + p1p2(p
2
3 − p1p3) + p1p2(p1p3 − p2p3) =

= ��
��p1p
2
2p3 −

HHHHp1p2p
2
3 +
HHHHp1p2p

2
3 −��

��HHHHp21p2p3 +��
��HHHHp21p2p3 −��

��p1p
2
2p3 = 0

Since C is constant, its value will be fixed by its initial condition: C(t) = C(0) = p1(0) · p2(0) · p3(0).
(b) Introducing xi = p1 − 1/3 to describe the deviation from the symmetric point p1 = p2 = p3 = 1/3, write down

the two constrains on pi (on their sum and product) in terms of xi. Further introducing y = p2 − p3, write down the
constraint p1p2p3 = C in terms of x1 and y (we will change x1 to x below to further simplify the notation).
Solution
From xi = pi − 1/3 we have pi = xi + 1/3, and by substituting in the constraint p1 + p2 + p3 = 1 we get:

1 = p1 + p2 + p3 = x1 +
1

3
+ x2 +

1

3
+ x3 +

1

3
= x1 + x2 + x3 + 1 ⇒ x1 + x2 + x3 = 0

On the other hand, substituting in the expression for C :

C = p1p2p3 =

(
x1 +

1

3

)(
x2 +

1

3

)(
x3 +

1

3

)
=

(
x1x2 +

x1
3

+
x2
3

+
1

9

)(
x3 +

1

3

)
=

= x1x2x3 +
1

3
x1x2 +

1

3
x1x3 +

1

9
x1 +

1

3
x2x3 +

1

9
x2 +

1

9
x3 +

1

27
=

= x1x2x3 +
1

3
(x1x2 + x2x3 + x1x3) +

1

9
(x1 + x2 + x3︸ ︷︷ ︸

=0

) +
1

27
=

= x1x2x3 +
1

3
(x1x2 + x2x3 + x1x3) +

1

27

25



If we now call x = p1 − 1/3 and y = p2 − p3 we have:

p1 = x+
1

3

{
p2 + p3 = 1− p1 = 2/3− x
p2 − p3 = y

From the second equation in the system we have p2 = p3+ y, and plugging this expression in the first equation
we obtain:

p3 + y + p3 =
2

3
− x ⇒ 2p3 =

2

3
− x− y ⇒ p3 =

1

2

(
2

3
− x− y

)
Plugging this expression for p3 back in the previous system of equations we get:

p2 =
1

2

(
2

3
− x− y

)
+ y =

1

2

(
2

3
− x+ y

)
We can now use these results to write C in terms of x and y:

C = p1p2p3 =

(
x+

1

3

)
1

2

(
2

3
− x− y

)
1

2

(
2

3
− x+ y

)
=

=
1

4

(
x+

1

3

)[(
2

3
− x
)2

− y2
]
=

1

4

(
x+

1

3

)(
4

9
+ x2 − 4

3
x− y2

)
=

=
1

4

(
4

9
x+ x3 − 4

3
x2 − xy2 + 4

27
+

1

3
x2 − 4

9
x− 1

3
y2
)

=

=
1

9
x+

1

4
x3 − 1

3
x2 − 1

4
xy2 +

1

27
+

1

12
x2 − 1

9
x− 1

12
y2 =

=
1

27
+

1

4
x3 − 1

4
x2 − 1

12
y2(1 + 3x) =

=
1

27
− 1

4
x2(1− x)− 1

12
y2(3x+ 1)

(c) From the constraint on x and y obtained in (b), show that there is a unique maximum for C(x, y) in the allowed space
0 < pi < 1. What is the value C0 := C(x0, y0) at the maximum? And what does the location of the maximum
(x0, y0) corresponds to in terms of the frequencies pi? Show that for C . C0 (i.e. , for 0 < C0 − C � C0), the stable
orbits are ellipses centered at (x0, y0), i.e. of the form a(x − x0)2 + b(y − y0)2 = c. How does the size of the ellipse
depend on the value of c0 − C?
Solution
To find the maximum of C by “brute force”, we have to see where the partial derivatives of C are equal to zero:

∂C

∂x
= −1

4

(
2x(1− x) + x2(−1)

)
− 1

12
y2 · 3 = −1

2
x2 +

3

4
x− 1

4
y2
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∂C

∂y
= − 1

12
· 2y(3x+ 1) = −1

6
y − 1

2
xy{

∂C/∂x = 0

∂C/∂y = 0
⇒

{
−1

2x
2 + 3

4x−
1
4y

2 = 0

−1
6y −

1
2xy = 0

⇒

{
3x2 − 2x− y2 = 0

y(3x+ 1) = 0

From the second equation we have either y = 0 or x = −1/3. If we set y = 0 in the first equation we get:

3x2 − 2x = 0 ⇒ x(3x− 2) = 0 ⇒

{
x = 0

x = 2/3

On the other hand, if we set x = −1/3 in the same equation we obtain:

3 · 1
9
+ 2

1

3
− y2 = 0 ⇒ y2 = 1 ⇒ y = ±1

(notice that, from the definitions of x and y and from the fact that 0 ≤ pi ≤ 1 we have −1/3 ≤ x ≤ 2/3 and
−1 ≤ y ≤ 1).
Therefore, the points where the derivative of C is null are (0, 0), (2/3, 0) and (−1/3,±1). In order to check
which one of them is a maximum, we have to compute the so-called “hessian matrix” of C , i.e.:

H(x, y) =

 ∂2C
∂x2

∂2C
∂x∂y

∂2C
∂y∂x

∂2C
∂y2


and evaluate it in (0, 0), (2/3, 0), (−1/3,−1) and (−1/3, 1). Remember that a point (x0, y0) of a function
f(x, y) is a maximum if H(x0, y0) is negative definite (i.e., all its eigenvalues are negative).
For our system, we have:

∂2C

∂x2
= −1

2
+

3

2
x

∂2C

∂x∂y
=

∂2C

∂y∂x
= −1

2
y

∂2C

∂y2
= −1

2
(3x+ 1)

Therefore:

H(x, y) =

−1
2 + 3

2x −1
2y

−1
2y −1

2(3x+ 1)


Let’s first evaluate it in (2/3, 0):

H(2/3, 0) =

−1
2 + 3

2 ·
2
3 −1

2 · 0

−1
2 · 0 −1

2(3 ·
2
3 + 1)

 =

1
2 0

0 −3
2


The eigenvalues of this matrix are 1/2 and−3/2, so the matrix is neither positive definite nor negative definite.
In (−1/3,−1) we have:

H(−1/3,−1) =

−1
2 + 3

2 ·
(
−1

3

)
−1

2 · (−1)

−1
2 · (−1) −1

2

[
3 ·
(
−1

3

)
+ 1
]
 =

−1 1
2

1
2 0


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The eigenvalues of this matrix are λ± = 1
2(−1±

√
2), where λ+ > 0 and λ− < 0 so again the matrix is neither

positive definite nor negative definite. Similarly, for (−1/3, 1) we have:

H(−1/3, 1) =

−1
2 + 3

2 ·
(
−1

3

)
−1

2 · 1

−1
2 · 1 −1

2

[
3 ·
(
−1

3

)
+ 1
]
 =

−1 1
2

1
2 0


and its eigenvalues are again λ± = 1

2(−1±
√
2).

Finally, in (0, 0) we have:

H(0, 0) =

−1
2 + 3

2 · 0 −1
2 · 0

−1
2 · 0 −1

2(3 · 0 + 1)

 =

−1
2 0

0 −1
2


This matrix is indeed negative definite, because its (only) eigenvalue is −1/2. Therefore, (x = 0, y = 0) is the
maximum of C . From the expression of C we also have C0 = C(0, 0) = 1/27.

There is, however, a smarter way to get to the same conclusions without computing all the derivatives shown
above. Let’s take a look again at how C is written as a function of x and y:

C(x, y) =
1

27
− 1

4
x2(1− x)− 1

12
y2(3x+ 1)

Now, from the definitions of x and y we have −1/3 ≤ x ≤ 2/3 and −1 ≤ y ≤ 1, and so x2, (1− x), y2 and
(3x+1) will always be positive. Therefore, C ≤ 1/27 because−x2(1− x)/4 < 0 and−y2(3x+1)/12 < 0.
Thus, 1/27 is the maximum value of C . Since C0 = C(0, 0) = 1/27, the point (0, 0) will be its maximum.

From the original expression of our equations, the point (x0 = 0, y0 = 0) corresponds to p1 = p2 = p3 = 1/3.

To determine the stable orbits around (x0, y0), we rewrite the expression of C as:

C = C0 −
1

4
x2 +

1

4
x3 − 1

4
xy2 − 1

12
y2

If we now call δC = C0−C and neglect all the terms in the equation beyond the leading order (because x and
y will be small, since we are studying the system close to (x0 = 0, y0 = 0)), we get:

−1

4
x2 − 1

12
y2 + δC = 0

and we can rewrite it as:

1

4
x2 +

1

12
y2 = δC ⇒ x2

4δC
+

y2

12δC
= 1 ⇒

(
x

2
√
δC

)2

+

(
y

2
√
3δC

)2

= 1

This is the equation of an ellipse that is centered in (0, 0) and has semiaxes of lengths 2
√
δC (along x) and

2
√
3δC (along y).
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(d) For an arbitrary value of the constant C in the range 0 < C < C0, show that x(t) is bounded in the range xmin(C)
and xmax(C) (in the sense that for the ellipse in (c), x(t) is bounded between±

√
c/a). Find the values of xmin and xmax

in the limit C → 0 and show that the trajectory is composed of three straight-line segments in this limit. Express these
segments in the original variables (p1, p2, p3) and explain in words what is happening along each trajectory. Sketch this
trajectory in the (x, y) space, along with the direction of the dynamics. Add to the plot the ellipse in (c) obtained in the
limit C → C0. Finally, sketch your guess of what the trajectories should look like for intermediate values of C .
Solution
We’ve just shown that xmin ≤ x ≤ xmax when δC ≈ 0, i.e. when C ≈ C0. To show that this is true for any
value of 0 < C < C0, let’s use the geenral expression of C to write y2 as a function of x:

C − C0 = −
1

4
x2(1− x)− 1

12
y2(3x+ 1) ⇒ 1

12
y2(3x+ 1) = C0 − C −

1

4
x2(1− x) ⇒

⇒ y2 =
12

3x+ 1

[
C0 − C −

1

4
x2(1− x)

]
Since y2 ≥ 0, we need this expression to be larger or equal to 0. Since 3x + 1 > 0 (remember that from the
definition of x we have −1/3 ≤ x ≤ 2/3), we will need:

C − C0 −
1

4
x2(1− x) ≥ 0 ⇒ 1

4
x2(1− x) ≤ C0 − C

The term on the left hand side is a cubic function. Therefore, we need to determine when the cubic function
assumes values lower or equal to C0 − C . It’s not necessary to solve the cubic equation (i.e., the equation
with the equality sign “=” instead of “≤”), also because it would be very complicated. We can simply plot
f(x) = x2(1− x)/4 and C0 − C to understand how the system behaves:

x

f(x)

−1/3 2/3

C0 − C

C0

xmin xmax

Therefore, we immediately see thatx2(1−x)/4 ≤ C0−C whenxmin ≤ x ≤ xmax for any value of 0 < C < C0.

If we now take the limit C → 0, we get:

1

4
x2(1− x) = C0 =

1

27

We could solve the cubic equation, but from the plot above we can see that asC → 0we will haveC0−C → C0

and therefore xmin → −1/3 and xmax → 2/3.
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To find the three straight-line segments, we notice that in (b) during some calculations we have written C as:

C =
1

4

(
x+

1

3

)[(
2

3
− x
)2

− y2
]

This expression is useful now because in the limit C → 0 we will have:

1

4

(
x+

1

3

)[(
2

3
− x
)2

− y2
]
= 0

This equation has three solutions:
• x = −1/3 with any value for y
• y = 2/3− x
• y = −2/3 + x

These solutions are represent by three lines in the (x, y) plane. The points in which these three lines intersect
are given by: {

x = −1/3
y = 2/3− x

{
x = −1/3
y = −2/3 + x

{
y = 2/3− x
y = −2/3 + x

By solving these simple linear systems we obtain:{
x = −1/3
y = 1

{
x = −1/3
y = −1

{
x = 2/3

y = 0

Therefore, this is the plot of the three segments that delineate the orbits of the system in the limit C → 0:

x

y

(−1/3, 1)

(−1/3,−1)

(2/3, 0)

Now, in terms of the original variables (p1, p2, p3) the three points correspond to8:
p1 = 0

p2 = 1

p3 = 0


p1 = 0

p2 = 0

p3 = 1


p1 = 1

p2 = 0

p3 = 0

8For example, for the point (−1/3, 1) we have x = −1/3 ⇒ p1 = 1/3− 1/3 = 0 and then:{
y = p2 − p3 = 1

p1 + p2 + p3 = 0
⇒

{
p2 − p3 = 1

p2 + p3 = 0
⇒

{
p2 = 1

p3 = 0

And similarly for the other points.
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Therefore, the three points correspond to states where only one of the populations is present. When we move
from one point to the other along the segment, one population is replacing the other: for example, if we move
along the segment (−1/3, 1)→ (2/3, 0) the population p1 is replacing populations p2.
To determine the direction of the dynamics (i.e., if the orbits are going clockwise or counterclockwise) we can
simply rewrite the equation for p1 in terms of x and y:

ẋ =

(
x+

1

3

)
y (7)

Since x+ 1/3 > 0, we have that ẋ > 0 when y > 0 and viceversa:

x

y

(−1/3, 1)

(−1/3,−1)

(2/3, 0)

Therefore, the orbits are going clockwise. The stream plot of these orbits and of the ones obtained in (c) will be:

x

y

(−1/3, 1)

(−1/3,−1)

(2/3, 0)
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The intermediate orbits will have a shape that is something in between the ellipse and the triangle (since C is a
continuous function, they will be a continuous deformation from the ellipse to the triangle). For example:

x

y

(−1/3, 1)

(−1/3,−1)

(2/3, 0)

The actual streamplot of this system9, plotted with Mathematica10, is shown in Figure 1.

(e) Bonus for the more mathematically inclined: find the period of oscillation for C → 0. You should be able to write your
answer in terms of ln(1/C). [Hint: you will need to obtain deviations of the trajectories from the straight-line segments,
and most importantly, the turning points for small but non-zero C . As the three pieces are symmetrical, you just need to
work out one of them.]

9It is not required by the homework, but the equations of which I am plotting the streamplot in this figure can be obtained from
the original equations by simply plugging the definitions of x and y:

ṗ1 = p1(p2 − p3)
ṗ2 = p2(p3 − p1)
ṗ3 = p3(p1 − p2)

⇒


ẋ =

(
x+ 1

3

)
y

ẏ = d
dt
(p2 − p3) = p2p3 − p2p1 − p1p3 + p2p3 = 2p2p3 − p1(p2 + p3)

From the definitions y = p2− p3 and x = p1− 1/3, and from the constraint p1 + p2 + p3 = 1 we find p2 = 1/3− x/2+ y/2 and
p3 = 1/3− x/2− y/2. Plugging these expressions in the equation for ẏ, in the end we obtain:

ẋ =

(
x+

1

3

)
y ẏ =

3

2
x2 − x− 1

2
y2

10This plot shows the flow for any initial condition on x and y, so also for (x, y) outside of the triangle we’ve studied in this point
(which are non-physical solutions of the system).
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Figure 1: Streamplot of the rock-scissor-paper system.

Solution
The hint suggests us to compute (approximately) the time the system takes to go through a trajectory like this:

x

y

(−1/3, 1)

(−1/3,−1)

(2/3, 0)

In particular, in this trajectory the system is going from one “turning point” to another, where the “turning
points” are the points where y is the closest to±1 (or in other words, the points where y has the highest/lowest
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value). Thanks to the symmetry of the problem, once we compute the time tsegment that the system takes to go
through one of this “pieces” of trajectory, the period T of the complete orbit will be T = 3tsegment.

To compute tsegment, we solve the equations of the system close to one of the segments, and since the system is
symmetrical we can choose any of the three segments. We choose to work near (−1/3,−1) → (−1/3, 1) (as
in the figure above), so we set x = −1/3 + ε (with ε > 0 small) in the equations of the system and we get:

ẋ =
(
x+ 1

3

)
y

ẏ = 3
2x

2 − x− 1
2y

2

⇒


ẋ =

(
−1

3 + ε+ 1
3

)
y

ẏ = 3
2

(
1
9 + ε2 − 2

3ε
)
− 1

3 + ε− 1
2y

2

⇒

⇒


ẋ = ε · y ≈ 0

ẏ = 1
2 + 3

2ε
2 − 1

2y
2 ≈ 1

2(1− y
2)

where we have neglected the terms containing ε, since it is small. The first equation expresses the fact that the
system remains close to the segment (since ẋ ≈ 0 means that x does not change), while the second one is the
equation we have to solve in order to determine tsegment. We do so by separating the variables:

dy

dt
=

1

2
(1− y2) ⇒ 2

dy

1− y2
= dt

We now integrate both sides; the right hand side is integrated from t = 0 (our initial time) to t = tsegment, while
since we are moving “up” the segment the left hand side is integrated from y = −1 + δ to y = 1 − δ, where
δ > 0 is small and will depend on ε:∫ 1−δ

−1+δ
2

dy

1− y2
=

∫ tsegment

0
dt ⇒

∫ 1−δ

−1+δ
2dy

(
1

1− y
+

1

1− y

)
= tsegment ⇒

⇒ tsegment = 2 ln

(
1 + y

1− y

)∣∣∣∣1−δ
−1+δ

= 2 ln
2

δ

Now, δ gives a measure of how close y gets to±1 at the turning points (as stated above, y goes from−1 + δ to
1−δ), and we want to express how it depends onC in the limitC → 0. To do this, we start from the expression
of C in terms of x and y:

C =
1

4

(
x+

1

3

)[(
2

3
− x
)2

− y2
]

and we set11 x = −1/3 + ε, y = 1− δ:

C =
1

4

(
−1

3
+ ε+

1

3

)[(
2

3
+

1

3
− ε
)2

− (1− δ)2
]
=

1

4
ε
(
1 + ε2 − 2ε− 1− δ2 + 2δ

)
⇒

⇒ 4C = −ε3 − 2ε2 − εδ2 + 2εδ

11Notice that our results do not change even if we choose y = −1 + δ, since C depends on y2.
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If we neglet all terms beyond leading orders in δ and ε:

4C = −2ε2 + 2εδ ⇒ 2C = εδ − ε2 ⇒ δ = ε+
2C

ε

The turning point corresponds to the minimum value of δ as a function of ε:

x

y

ε∗

δ∗

0 =
∂

∂ε
δ(ε) = 1− 2C

ε2
⇒ ε∗ =

√
2C ⇒ δ∗ = 2

√
2C

Therefore, the period of the orbits for C → 0 will be:

T = 3tsegment = 3 · 2 ln 2

δ∗
= 6 ln

2

2
√
2C

= 6 ln
1√
2C

= 3 ln
1

2C
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