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Nov 18th, 2022

Relationship between the Consumer-Resource model and population dynamics model
In class, we went over the dynamics in the chemostat. Describing the density of the organism by p(t) and the nutrient
concentration in the chemostat by n(t), the CR model for the system is

p=r(n)-p—pup, (1)
n=p-(ng—n)—rn) p/Y )

where r(n) = ron/(n + K) is the nutrient-dependent replication rate, i is the dilution rate of the chemostat, nof is
the nutrient inﬂux, and Y is the biomass yield.

In this problem, you will derive the logistic equation which describes the dynamics of the population without referencing
the nutrient,

p=rp-(1=p/p), (3)

and obtain the effective replication rate T and carrying capacity (p4) in terms of the chemostat parameters (j1, ) and the
physiological parameters (r, KX, Y"). Through this exercise, you will get a feel of the occurrence of “dimension reduction”
(in this case, referring to a system with two degrees of freedom, p(t) and n(t) being reduced to a single degree of freedom

p(t)

We shall work in a parameter region typical of chemostat operation, pr << rg, for which we can linearize the replication
rate, taking it to be r(n) ~ rn/K = vn. Using this linear form of 7(n), express the CR equations in terms of two
dimensionless variables u equivn/nogand v = p/po (where pg = no/Y), the dimensionless time variable, T = ngvt,
and a dimensionless parameter, 1 = v /(vnyg). Sketch the two null clines and the fixed point (u, v*) for n < 1 (where
a nontrivial steady state with px > 0 exists).

Solution
using v = p/po7 u = n/no, we have

dv
— = Vnou — U
i 0 2
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d
ditl = pu(l —u) — vnouv

Furthermore, by using 7 = novt and ) = p/(vng), we will have:

Z—Z =n(l—-u)—uv
d
dfv = (u—n)v
Solve for the two nullcines

d _

du o, -

dr U
dv
— =0=u=
dr v=n

dv
v dr — 0
Mdu
dr — 0
1—-np--------
U
n
The fixed point will be:
du dv . .
E—O,%—Oiu =mv =1-—n

(b) Expand w, v in the vicinity of the fixed poing, i.c., for u = u* + x and v = v* 4+ y. For |z| << u* and |y| << v*,
the equation of motion can be reduced to the following linear equation

() (2)

where X is the eigenvalue. Workout the form of the matrix M. From det(M — X-I) = 0 (where I is the identity matrix),
solve for the two eigenvalues in term of 1. In one plot, sketch how the two eigenvalues depend on ) for 0 < n < 1.

Solution

The Jacobian matrix is:

0 (du
%E) [ —n—v —u
s )= () ®
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—
S
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at fixed point u* =n,v* =1 -1,

From det(M — X\ - I) = 0, we have:

det(M — M) =X+ X+n(1—-n)=0

:>)\1:n—1,)\2:—7]

AM=n-—1

n

)\2 ="

A\Y

(c) The more negative eigenvalue (denoted as A gqst) describes the decay rate of the fast mode and the less negative eigenvalue
(denoted as /\(Slow) ) describes the decay rate of the slow mode. For > 0.5, what is the expression for Asion (n)? To find
the slow mode itself, use Asiou (n)? in the linear equation (4) to obtain an equation rclating x(t) and y(t); chis equarion
describes the slow mode. To see what this slow-mode means, re-express the equation for the slow mode in terms of u(t) and
v(t), using the expressions for the fixed point u*(n) and v*(n). Sketch the slow-mode in (u, v) space along with the fixed
point and the null clines. Next re-express the slow-mode for w(t) and v(t) in terms of the original variables n(t) and p(t).
Can you interpret the meaning of the slow mode now?

Solution
for n > 0.5, —n is more negative, so the decay rate of the slow mode will be:

ASlow (77) =1n—- 1

o-o(3)-(:2 ()

Then use equation 4:



This equation describe the slow mode. let’s reexpress the slow mode in terms ofu(t) and v(t):
u+v—1=0

and in terms of p(t) and n(t) (by using v = p/po, u = n/ng):

n
= (1 — —
p = po( no)
dv __
v v _
4\@:0

dr

slow mode

n

The slow mode evolves along a straight line chat reflects the conservation of the normalized total mass, which

is the sum of biomass and nutrients.

(d)  Ower long time scales (after the fast mode has settled down), the two dynamical variables n(t) and p(t) collapses onto the
slow mode, such that the slow mode equation becomes a constraint, and the system is Cffectively that of a single variable.
Use this constraint to express n(t) in term of p(t), and substitute the resulting expression for n(t) into Eq. (1) to obtain an
6ff€criv€ equation for p(t). Show that it is of the logistic form Eq. (3) and ﬁnd the two parameters of the logistic equation,
7 and p in terms of the original parameters of the system.
Solution
Use the contraint in (c) to express n(t) in term of p(t):

n
p=po(l——)=n=no(l--—)
no

Then we can substitute the resulting expression for n(t) into Eq. (1):

rny

p=vmp—pp = p(—p+vno(1 — 2)) = (vng — p)p(1 — p)

o0 polvno — 11
By using ) = p/vng,
F—)

p=vno(l—mn)p(l— m

comparing with p = 7p - (1 — p/p), we have

7 =wvno(l—n),p=po(l—n)



(e) Comment on the range of 1 for which derivation of the logistic equation (part(d)) breaks down. Given that large the
separation of the two time scales (X a5t and Agjow), the better is the derivation, what range of 1 is the chemostat system
best approximated by the logistic equation? What are the values of 7 and p in this limit? Can you come up with a general
explanation for why the logistic equation is a good approximation of chemostat dynamics in this limic?

the separation of the two time scales (A g and Agjoy) is:
)\slow - Afobst =n—- 1-— (_77) = 277_ 1

The system can be approximated by logistic equation when the separation is maximized. The range of 7 is:

1 — 1. In this limit, 7 = vng(1 — 1) and p = po(1 — n) are small. The significant separation between fast

and slow dynamics ensures that the system can be treated as reaching a quasi-steady state quickly (fast mode),

followed by gradual changcs (slow modc), which satisfies by the constraint p= ,00(1 — %) The cost is the 10ng
1 1

relaxation time: ¢, X +~—— = i
slow -1

2. Competition for nutrient
Two species described by densities p1(t) and pa(t) grow on the same nutrient source, of concentration n(t). Suppose the
growth rate of species 4 is given by the Monod growth law, 1i(n) = r; o - n/(n+ K;), the death rate is given by 13, and
the nutrient inﬂux is jo. Find a criterion on the physiological parameters (Ti70> K;, ,U«z') in order for species © to survive in
the steady state.

Solution
The equations of the system are:

_— , n B — , n B h:._plﬁ_pzm
P1L=p1 1’0771—1—1(1 241 P2 = P2 2’07n+K2 w2 Jo 7Y1 7Y2

Suppose species 1 survives, and species 2 goes to extinction. From the equation for pq at steady state we have:

,O'—P*<T o _“)_0 B e
AU kT Moty M
K 1
= g4 :<T1’°—1>
H1 ny nq Ky \

Where n is the steady-state resource concentration when only species 1 is present.

Similarly, if we assume that species 2 survives and species 1 goes to extinction we have:

1 1 <’I“270 1)
ny Ko \ p2
where again N9 1S the stea y—state resource concentration when on y Species 4 18 present.

Now, let’s consider the case where species species 1 survives and species 2 is going to extinction. In this case



(a)

when n = n} we need p2(n]) < 0 (the population of species 2 will always decrease until p5 = 0). Therefore:

2= (T L B ><0:>r M < :>r2’0<1+&:>
P2 = P2 Q’On’l‘+K2 M2 2’0n’{+K2 H2 1 g

K 1 T 1 r
702’0—1<2<T1’0—1> = (2’0—1><<1’0—1>
2 Ky \ i Ky \ po K; \ 11

This condition can be rewritten as:

1 1 1 1
<T2’0—1><<r1’0—1) = <= => nj<n;
Ko \ po K1\ ny  nj

Therefore, species 1 survives if n] < n3. By symmetry, species 2 will survive when n5 < nj. In general, if

we have N species in this system the only one that will survive is che species with the lowest value of n: The
ccological meaning of this condition is that the species that will outcompete all the others is the one that uses the
resource most efficiently, because it is the species that leaves the lowest steady-state concentration of resource

in the environment, thus making it harder for other species to keep up with its own growth.

MacArthur’s model of resource competition
MacArthur’s model applied to 2-species (of densities p1, p2) and 2 nutrients (of concentrations na, ng) is

p1= (UIATLA + ’U1BTLB) - p1 — H1pP1 (8)
p2 = (V24n4 +v2BNE) - P2 — fi202 (9)
) nA
NA = YANA - (1 - K) — (viap1 + v24p2)nA (10)
A
. np
np =19BNB" (1 - K) — (viBp1 + v2Bp2)nB (11)
B

where Vjq is the consumption matrix indicating the uptake preference of species 4 for nutrient o, p; is the death rate of
species @, and ¢ is the generation rate, K is the concentration scale of nutrient cv in the habitat. (The yield factor has

been omitted.)

Assume the existence of a non-trivial steady state with 0, n’, p3, p3 all being non-zero. From p1/p; = 0 in Egs. (2?)
and (??), show that in the limit the death rate p; — 0, the steady state concentrations ng — 0. Using this result in Egs.
(??) and (??), show that g /Te = 0 lead to the following equation for the steady state densities

<'U1A U2A> . (P1> _ <’YA>
U1B V2B P2 B

Solution
From Egs. (??) and (??) at steady state we have:

p1 =viany +vipnp L _M1V2B — H2UiB ot Hav24 — pavia
A= B =
H2 = VaAMy + vapnp V1AV2B — V1BV24 U1BU24 — V1AV2B
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Therefore, we will have n}, — 0if u; — 0.
From Egs. (??) and (??) ac stcady state we have:

ya(l = n}/Ka) = viap] + v24p3
vB(1 —n/KB) = viBp] + v2pps

and in che limit n:; — 0 chis reduces to:

YA = V1ApT + V2AP3 N <U1A 'UQA) _ (PT) _ <7A>
vB = viBp; + v2p P} V1B V2B P VB
(b) Write down the solution of the above matrix equation for p} and p3. Show that the feasibility condition, i.e., p} > 0 and
p5 > 0, can be written as two conditions between the environmental parameters 7ya, yg, and m; = v;g/v;, which

describes the nutrient preference of species 4. Plot the “ecological phase diagram” in the space (ya, YB), marking clearly
the region of coexistence, and the region of dominance/extinction.

Solution
By simply solving the linear system:
YA = V1ApP] + V2405

V2BYA — V2A7YB UV1BYA — V1AYB

. . = A= pa =
YB = V1BP1 T V2BP5 V1AV2B — V1BVU24 V1BV2A — V1AV2B
Therefore, we have pi‘ > 0 when:
V2BYA > V2AYB V2BYA < V2A7YB
or =
V1AV2B > V1BU24 V14V2B < V1BU24
ma > YB/vA or mz < YB/YA
mip < Mmg mi > mo
Similarly, we have that p5 > 0 when:
m1 > YB/vA o m1 < vB/va
mi > My mi < mg
ThCI‘efOIC, putting together these results, we have:
m1<7—B<m2 when m1 < mo
YA
m2<E<m1 when mq1 > mo
YA

Therefore, the “ecological phase diagram” in (’YA, ’yB) space looks like this (in the case m1 < ma):



(c) Fora fixed environment parameterized by -y = yp /7y a (which indicates the relative nutrient availability), plot the “physi-
ological phase diagram” in the space (m1, ma) by indicating which regions of this space give coexistence, and which regions
give dominance of species 1 or 2.

Solution
By looking at the conditions found above, in the (mq, ma) space we have that p7 > 0 and p; = 0 when:

&
Y
mo . & &
1 L \\\“z
: @N 7(\
: \\\\\’
p1 >0 L ph >0
| p1 =0
Sl o
pi =0
L pi>0
p1>0 |
; ™

Similarly, for p5 we have:



Y
S . o
: L/
| S/
1 c(\'\\\’
ps >0 L ph =0
' p5 >0
"}/ ______________ /o ___.
1
1
p5 >0 |
! p5 >0
p5=0
1
1
1
1 ml

Therefore, the “physiological phase diagram” in (mq, mg) space looks like this:

ma
|
L p1>0
coexistence !
! py >0
/'\/ ______________ A
1
1
ps >0 :
! coexistence
p1>0 |
|
1

Y

(d) What is che ‘optimal " value of mq that species 1 should take on to maximize its existence (i.el, survival) if it expects species
2 to take on a random value of ma? or if it expects species 2 to take on the ‘optimal’ value of ma? If the m values of
both species are close to this ‘optimal > value, what would be the probability that one species becomes extinct if the environ-
mental parameter 7y can take on a value within a finite range § about a mean value, 5 with equal probability? [Assume
the environment can vary rapidly while m;, determined by genetics, is frozen over the scale of environmental variation.|
What range of my should each species  take on to maximize its existence in a fluctuating environment if it can coordinate
with the other species which is also interested in maximizing its existence? What danger is there if the other species ‘cheats’?
[Note: Your response to (d) is not expected to be quantitative.|
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Solution
The “optimal” value that my should take to maximize the survival of species 1 is v in both cases.

Let’s now consider the case mqi, ma ~ + and the environmental parameter can take value within a finite
range 0 around its mean value 7. As the hint suggest, we can assume that the point (ml, mg) that describes
the species is fixed and 7y changes rapidly. In this case there are three possibilities: we either end up in one
of the two “quadrants” where coexistence is possible, or we end up in one branch of the two “half-quadrants”
where one of the species goes to extinction. Let’s consider for example species 1: the probability that species
1 goes extinct as 7y changes will be proportional to the angles occupied by the quadrant p5 > 0, and since
each quadrant is sparmed by an angle of 45°, the probzibility ofgoing extinctis 2 - 2 - 45/360 = 1/2 (alterna-
tively, we can compute this probability as the complementary of the probability of both species coexisting, i.c.

1-2-90/360=1—1/2=1/2).

A more formal way to see the same thing is the following. If we fix (m], m3) ~ (,7) and then we let the

environmental parameter 7y vary within a range d, we can “zoom in” the physiological phase diagram:

J

and the system now will be in a point (e.g., the one shown in the figure above) that can be thought of as randomly
drawn in chis square. Thercfore, the probability that (for cxample) species 1 will go extinct will be equal to the
ratio between the area inside that square where p7 = 0 and the total area of the square. Since pj = 0 in two
right triangles of base and height 0, the probability of extinction is:

2-0%/2 0% 1

(26)2 452 4

If the species want to maximize their existence in a fluctuating environment and can coordinate with each other,
they should set their m; so that the system will end up surely in one of the two “quadrants” where coexistence
is possible, i.c.:

my <7y <mg or mo < v <mq

For example, if v € [7 — 0,7 + ¢], they should set:

m1:7+5 mp = 1) (12)
m2:7—5 mo = 19

which, referring to the “zommed in” figure shown above, means putting the system in either of these two points:

10



(a)

Finally, if one of the two species “cheats” (i.e., it doesn’t coordinate with the other as discussed above) there is
the risk that either one of the two species will g0 extinctﬂ

. Compctition for essential nutrients

The dependence of the growth of bacterial species 1 on two essential nutrients A and B is given by

~1
m(nA,nB):[ 1,1 ] 1)

ViAT A ViBM'B

where Vjq is the single-nutrient consumption efficiency (when the other nutrient is in saturation) and n, is the concentration
of nutrient cv as in Problem #2. Unlike substitutable nutrients, the uptake of nutrient cv by species i is given by r; - p; / Ya,
where p; is the density of species 4, and Yy, is the yield of either species for nutrient c. This leads to the following set of
consumer-resource equations

p1 =r1(na,np) - p1 — pup1
p2 =12(na,nB) - p2 — P2

. 1 2
nag = u(n% —ny) — 7“1(71,4,713)7[) —ra(na,np)— P
YLA YQA
. P1 2
np = ,u(n% —np) —r1(na,np)o— —ra(na,np) P
Y18 Yo

)

for a chemostat-based system where p is cthe dilution rate and n2 is the inflow concentration of nutrient cv. In chis problem
you will derive the feasibility conditions for this system using Tllman s graphical approach.

Without solving the equations algebmically, sketch the conditions for pi =0in the (n A, B) plane. Indicate the location
of (n*, n%) where both py and p are finite. On the plot, also mark the poine (n%, n%) which is proportional to the
nuerient inflow. Next, find an algebraic expression for ny, n; in terms of the environmental and physiological parameters.
[Hint: You can first use the matrix inversion formula for ngt ]

Solution
From p; = 0 we have:
1 n 1 1 Vi A nA

Tviamn
ViAMA  ViBNB [ vip —AEA 1]

which is a hyperbola that looks like this:

"Notice: even the species that is cheating can go extinct: a cheater can drive itself to extinction, if it doesn’t cheat in the “right” way!

11



np

nA

where we have also shown the point proportional to nutrient inflow.

In order to find the algebraic expression of n%j and n;, we start from p; = 0 as above:

11 1 1
U U B S| vy W A .
V1A Ny viB nNp 123 = —
[ SRS U U L ) .
* v n* - L 4 = 4
vaa  nY 2B B M von om n m
If we now call M the matrix on the left and use the inversion formula, we get:
1 1 1 1
L D 1
U 1 v2B V1B M
1 det M 1 1 1
ng V24 V1A H
where: ) . )
V1AV1BV2AV2B
det M = — = =
VIAU2B  V1BU2A det M v1pv2A — v1AV2B
Therefore, we get:
1 1 wviavea(vip —v2B) 1 1 wvipvp(vea —v14)
ny [ V1BU24 — U1AV2B np [ VIBU24 — V1AV2B
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ﬁl’ld EhUS:

V1BV24 — V1AV2B . V1BV24 — V1AV2B
np =g

nh = -
A v14v24 (V1B — V2B) v1BU2B (V24 — V14)

(b) Show the balance of nutrient ﬂuxes at (nz, n*B) gmphically using a vector relation among the nutrient inﬂux Jo and

the consumption fluxes Jy, Ja, as done in class. Describe the condition for coexistence graphically, and write down the
Corresponding algebmic expression involving the constraint on n%, nOB

Solution

We can rewrite the equations for 124 and np as follows:

na = p(n% —na) —ri(na,np)¥s —ra(na,np) 2

’ =
np = u(n% —npg) —r1(na, nB)y’le —r2(na, nB)ngB
: 0
nA Ny —MnA 7”1/Y1,A) (7’2/Y2,A>
= ) = - —
<n3> : <”93 - n3> P <7"1/Y1,B P2\ra/ Yo,
1=j0 :=f1 :zfg

Therefore, the consumption fluxes Ji and Ja point in directions with slopes Y7 /Y1, 4 and Y2 g/ Y>3 4, respec-
tively. If we use (na,ng) = (n’,n}), the system looks like this:

Where we have also highlightcd the directions along which jl and fg lie, i.e. the lines passing through (nz, n*B)
and with slopes Y1, g/Y7 4 and Y5 /Y5 4. Coexistence will be possible if the slope of‘J_;J, ie. (n% —n*B)/(n% —
nj‘q), lies between the slopcs of these two lines:

0
Yop np—np Yip

Yo n% —n% Yia

(¢) Show graphically what happens if (n%, n%) lies outside of the constraint, and write down the algebraic expression for the

steady-state concentrations 1y, Ny and densities p}, p3 corresponding to the two types of outcomes that would arise.

Solution

Referring to the figure above, if (n%, n%) lies outside of the coexistence region we can have either one or both
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species going to extinction. In particular, if (n%, n%) lies between the blue hyperbola and the direction of Ji
species 1 will dominate, and conversely species 2 will outcompete species 1if (n%, n%); finally, if (n%, n%) lies
below the two hyperbolas, both species will go to extinction:

nA

Let’s assume for example that (n%,n%) lies in the area where species 1 dominates (the case for species 2 is
symmetrical). The point will follow J7 and thus move along the line passing through (n%, n%) with the same

slope as Ji. At the steady state, (n%, n};) will lic on the intersection between this line and the nullcline p; = 0:

np

Therefore, can find n%y, n}; by finding the intersection of these two curves. The nullcline p1 = 0 is:
1 1
_l’_

V1AM A U1BNB

On the other hand, the line along which the system moves is:
np=q+m-ny
where m =Y] /Y] 4 (the slope of J1) and g can be found from the fact that the line passes through (n%, n%)

YiB Y;

B0 0 1,B_0
nyg = (g=ng-— ny4

Y14 Yia

)

n%=q+

14



Therefore, the point (n%, n};) can be found by solving:
1 1

* + *

V1A 4 viBnp

=y np=q+m-nj

This can be done, for example, by taking the reciprocal of the equation of the line:

1 1

*

= *
np 1+ mn%
and substituting in the equation of the nullcline:

1 1 N vig(1+mn%) +viank
¥y M = "
vian®y  vip(l 4+ mn¥) viAv1 BNty (g + mn’)

2
= HU1AUVIBM - (RZ) + (lwlAleq — 1B — UlA)TLZ —vpg=0 =

1

= nf=—
AT 2umuiavip

<U1Bm + V1A — HqUIAVIB + \/(,qumle —vipm —v14)% + 4Mqu1AU%B>

(which is the only acceptable solution, since the other one is negative). Substituting in the equation for the
straight line we get ng =q+m-njy.
Finally, from the equation for pq at steady state we get:

pi(ri(ny,ng) —p)=0 = ri(ny,npg)=pn (14)
and therefore, from the equation for 1 4:

i

Lo = Vil - )
1,A

p(niy —ny) = ri(ni, np)

as stated above, the case where species 2 dominates is symmetrical, so:

1
ny=—"— <U2Bm + V24 — HqU2AV2B T+ \/(MQUQAUQB — vapm — v24)% + 4MquQAU§B>
2pumuaava
Yo B 0o Y2B o
where: m= — gq=ng— ——n
Yo a4 B Yo a4 A

and furthermore:
* 0 *
P2 = Y2,A(”A —njy)

(d) Describe and Cxplain the differ&nce of the behavior obtained here compared to the ones obtained in class for two substitutable
nutrients.

Solution

In the case of substitutable resources, if we inflow of either of the two resources is very large, one of the two
species will dominate (according to their preferences). This happens because the nullclines intersect the axes
and therefore the area in the (na, np) space where both species go to extinction is finite. Here, however, this
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is not true for essential resources: since the nullclines are now hyperbolas with non-trivial asymptotes (i.e.7 the
asymptotes are not the axes, see also the representation of the system in point (a)) the area where extinction
is possible extends to infinity. This means that even if we put a very large amount of one resource, let’s say
resource A for example7 it is not guarzmteed that species 2 will dominate (if we refer to the phase diagrams
plotted above). In fact, since both resources are essential species 2 also needs a minimum supply of resource 1
to grow. If chis supply is not providcd, species 2 will not be able to dominate the system even though resource
A is very abundant.
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