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Topic 4: Genetic Circuits
A. Integrated model of gene expression

1. constitutive gene expression
2. transcription control
3. translation control and mRNA stability
4. control of protein degradation

B. Simple circuits using only transcriptional control
1. negative autoregulation
2. positive autoregulation
3. toggle switch
4. oscillators

C. Noise in gene expression
D. Metabolic control

1. gene regulation
2. effect of inducer
3. metabolic feedback
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C. Genetic noise
• extrinsic: variation of “external factors”, e.g., RNAp, ribosome, temp, …
• intrinsic: stochasticity in mRNA and protein synthesis, TF-DNA binding,…
! cell-to-cell variability if noise is amplified by feedback
! escape from one state to another within a single cell

Q: fraction of total noise from extrinsic/intrinsic sources? 
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LOW extrinsic noise and 
HIGH intrinsic noise:

uncorrelated fluctuations
Put two fluorescent 
proteins under the 
control of identical 
promoters.

HIGH extrinsic noise and 
LOW intrinsic noise:

highly correlated variations
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Scatter plot of mean fluorescence 
intensity/cell for many cells.

! extrinsic noise larger, but intrinsic noise not negligible
! noise decreases with expression levels

Population average at different 
inducer concentrations
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Continuous, differential change 
in the concentration of C

C ~ 10 C ~ 100 C ~ 1000

[ ]C

time

What effect do these fluctuations 
have on the observable dynamics 

of the system?

Large no. molecules in C ~ 1023 (mole)

! use Master Equations to characterize these fluctuations

Intrinsic stochasticity

• rate equation:
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Consider mRNA synthesis

βm
αm M-1 M+1M

αm αm

M +1( ) ⋅ βmM ⋅ βm

  two reactions:

M    αm  ⎯ →⎯⎯ M +1

M M ⋅βm⎯ →⎯⎯⎯ M −1

Describe discrete dynamics by P(M,t)
– probability to find M mRNA molecules at time t.

Write a probability conservation equation:
∂P
∂t

= αm ⋅ P M −1,t( ) + M +1( ) ⋅ βm ⋅ P M +1,t( ){ } − αm ⋅ P M ,t( ) + M ⋅ βm ⋅ P M ,t( ){ }
Flux In Flux Out

M mRNA

corresponding rate equation:      
dM
dt

= αm − βm ⋅ M

in term of mRNA conc m ≡ M /V:      
dm
dt

= αm /V − βm ⋅m
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Multiply by zM, then sum over all M, get 

∂F
∂t

= αm ⋅ z −1( ) ⋅ F z,t( ) − βm ⋅ z −1( ) ⋅ ∂F∂z

Turns a discrete-differential 
equation for P into a partial 
differential equation for F

At steady-state, 0F
t

∂ =
∂

⇒ F * z( ) = exp αm

βm
z −1( )⎡

⎣
⎢

⎤

⎦
⎥

∂P
∂t

= αm ⋅ P M −1,t( ) + M +1( ) ⋅ βm ⋅ P M +1,t( ){ } − αm ⋅ P M ,t( ) + M ⋅ βm ⋅ P M ,t( ){ }
      = αm ⋅ P M −1,t( ) − P M ,t( )⎡⎣ ⎤⎦ + βm ⋅ M +1( ) ⋅ P M +1,t( ) − M ⋅ P M ,t( )⎡⎣ ⎤⎦

! Solve for P(M,t) by z-transform: F z,t( ) = z M P M ,t( )
M =0

∞

∑

some properties of F(z,t):

F z,t( )
z=1

= P M ,t( ) = 1
M =0

∞

∑
∂
∂z
F(z,t)

z=1

= M ⋅ P M ,t( )
m=0

∞

∑ = M

∂2

∂z2
F z,t( )

z=1

= M 2 − M

Avg[M]
M =

αm

βm
,  and   var[M] =

αm

βm
! avg = var   signature of Poisson

Fano Factor:
var[M ]
M

=
αm / βm
αm / βm

= 1

rel. fluctuation: η =
var[M ]

M
2 =

1

M
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Next include translation

dM
dt

= αm − βm ⋅ M

dN
dt

= α p ⋅ M − β p ⋅ N

write out the Master equation governing P(M,N,t).

solve by double z-transform:

var[N ]
N

  =  1+
α p

βm + β p

since βm≫βp≈ 1+
α p

βm

Translational Bursting b
≈ average number of proteins 

translated within mRNA lifetime

• Moment generating functions only work if the transition rates are
constant or linear (e.g., αm and M·βm)

• For regulated networks, e.g., autoactivator with synthesis rate αm"G (N/V),
need to use approximations…

b
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Cai, Friedman, Xie (2006) Nature 440: 358.

rate equations:

  
N  =  αm ⋅α p / βm ⋅ β p

Fano factor:

No. mRNA: M; No. proteins: N
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Approximation 1:  Numerical simulation 
Common method: Gillespie’s stochastic simulation algorithm. 

• Use the transition rate to compute a probability distribution for   
when the next reaction will be completed

• Use the transition rates to compute a probability distribution for 
which reaction will occur

• Update the state for each species of reactant
! easy to program, but computes one trajectory at a time; no deep insight.

[Gillespie (1977) J. Chem. Phys. 81: 2340.]

Apply to constitutive protein synthesis
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Time (min)

Parameter Blue Red

αm (min-1) 0.1 0.01

βm 1/5 1/5

αp 2 20

βp 1/50 1/50

M = αm − βm ⋅ M
N = α p ⋅ M − β p ⋅ N

<N> 50 50

b 10 100
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Apply to the autoactivator model

0 400 800 1200 1600 20000
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Parameter Blue Red

αm (min-1) 25 2.5

αp 0.2 2

<A> 1250 1250

b 1 10

f = 25
σ = 2.5

M = αm ⋅G (A / KV ) − βm ⋅ M
A = α p ⋅ M − β p ⋅ A

with  G =
f −1 + A / KV( )n
1+ A / KV( )n

.

rate equations:

Fold Activation f

2
Monostable

Bistable
3

4

5

10 10020 50

Monostable

σ
= 
α m
α p

/(β
m
β p
K
V
)

deterministic phase diagram

! no longer ‘bistable’ for large burstiness
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Approximation 2: Langevin dynamics

• add a Gaussian “noise” ξ(t) to the deterministic rate equation 

   !N =α −β ⋅N (t)+ξ (t),   
α ≡αmα p / βm ,   β ≡ β p

• adjust the variance of ξ(t), D, to match the Fano factor 

ξ(t) = 0,     ξ(t)ξ(t ') = 2Dδ (t − t ')

Consider constitutive protein expression:

• distribution of N evolves according to the Fokker-Planck equation 

∂
∂t
P(N ,t) = −

∂
∂N

α − β ⋅ N( ) ⋅ P⎡⎣ ⎤⎦ + D ⋅
∂2

∂N 2 P

! solve for the steady-state distribution P*(N ) ∝ e
−

β
2D
(N −α /β )2

N = α / β,   var[N ] = N 2 − N
2
= D / β

Fano factor:  
var[N ]
N

= 1+ b    ⇒   D = (1+ b) ⋅α
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• add Gaussian “noise” ξ(t) to the deterministic rate equation 
A = α ⋅G(A / KV ) − β ⋅ A+ ξ(t)

! amplitude of ξ(t) depends on A: multiplicative noise

with   ξ(t)ξ(t ') = 2(1+ b)αG(A / KV )δ (t − t ')

Apply to the autoactivator:

• Fokker-Planck equation for stochastic processes with multiplicative noise: 
∂
∂t
P(A,t) = −

∂
∂A

f (A) ⋅ P⎡⎣ ⎤⎦ +
∂2

∂A2
g(A) ⋅ P⎡⎣ ⎤⎦

! solve for the steady-state distribution P*(A) 

A = α ⋅G (A / KV ) − β ⋅ A,   with  G (x) =
f −1 + xn

1+ xn

f(A) g(A)

[c.f. Ito vs Stratanovich]

f (A) ⋅ P*(A) = d
dA g(A) ⋅ P

*(A) + g(A) ⋅ ddA P
*(A)

ln P*(A) = dA ' 
f (A ') − d

dA g(A ')
g(A ')

⎡

⎣
⎢

⎤

⎦
⎥

A

∫

= dA ' 
f (A ')
g(A ')

A

∫   − ln g(A)
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• add Gaussian “noise” ξ(t) to the deterministic rate equation 
A = α ⋅G(A / KV ) − β ⋅ A+ ξ(t) with   ξ(t)ξ(t ') = 2(1+ b)αG(A / KV )δ (t − t ')

Apply to the autoactivator: A = α ⋅G (A / KV ) − β ⋅ A,   with  G (x) =
f −1 + xn

1+ xn

f(A) g(A)

ln P*(A) = dA ' 
f (A ')
g(A ')

A

∫   − ln g(A)

Probability being in the 
high state reduced f-fold

= const.− lnG(A / KV ) −
KV

1+ b
dx 

x
σ ⋅G(x)

−1
⎡

⎣
⎢

⎤

⎦
⎥

A/KV

∫  

⇒  P*(A) ∝
1

G(A / KV )
exp −

KV
1+ b

dx 
x

σ ⋅G(x)
−1

⎡

⎣
⎢

⎤

⎦
⎥

A/KV

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  

effective potential U(A/KV)

effective temperature = (1+b)/(KV)
! eff. temp increased by burstiness (b), decreased by No. proteins (KV) 

σ ≡ α / (βKV )
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Effective potential U (x) = dx ' 
x '

σ ⋅G(x ')
−1

⎡

⎣
⎢

⎤

⎦
⎥

x

∫  ,  with  G (x) =
f −1 + xn

1+ xn

dU
dx

=
x

σ ⋅G(x)
−1

dU
dx

x*
= 0

σ ⋅G x*( ) = x*

c.f. deterministic eqn: β−1  x = σ ⋅G(x) − x

! extrema of U(x)  ⇔ fixed points 

d 2U
dx2

x*

= x* ⋅ 1− s*( ),     where  s* =
d lnG
d ln x

x*

! unstable fixed points (s*>1):  maxima of U(x)
! stable fixed points (s* < 1): minima of U(x)

unstable
fixed pt

stable
fixed pt

stable
fixed pt

stability analysis (graphical):

ln G

ln x

x/σ

! robustness of bistability to stochastic fluctuations: 
compare “barrier height” to eff temperature
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Effective potential U (x) = dx ' 
x '

σ ⋅G(x ')
−1

⎡

⎣
⎢

⎤

⎦
⎥

x

∫  ,  with  G (x) =
f −1 + xn

1+ xn

P*(x) ∝
1
G(x)

exp −U (x) / Teff{ }  

Teff = (1+ b) / (KV )

for b ~ 10,  Teff ≈
0.1  for KV=100
1   for KV=10

⎧
⎨
⎪

⎩⎪

e
−U ( x )/Teff P*(x)
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Summary on Langevin approach: 
• effective thermodynamic formulation for nonequilibrium systems
• intuitive; qualitative effect of noise readily revealed
• kinetics of transition between stable states can be studied
• difficult to generalize to multiple variables

Approximation 3: perturbative expansion (in 1/N)
• van Kampen, Adv. Chem. Phys. 34: 245 (1976)
• Scott et al, PNAS 104: 7402 (2007)

Fold Activation

2

Monostable

Bistable
3

4

5
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f

0.2
0.4
0.6

σ
= 
α

/(β
KV
) Teff! noise-corrected phase diagram

! regime of bistability
significantly reduced
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Effect of fluctuations on oscillatory circuits

( )

( )

R A R

A A A A

A

dR g A R A R
dt
dA g A A A R C
dt
dC A R C
dt

α β κ

α β κ β

κ β

= ⋅ − ⋅ − ⋅ ⋅

= ⋅ − ⋅ − ⋅ ⋅ + ⋅

= ⋅ ⋅ − ⋅

RA

R

C+
κ

Aβ

Inert 
Dimer

Repressor 
is recycled
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Noise – Induced 
Oscillations

βR
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