PHYS 176/276 Quantitative Molecular Biology Problem Set #2 Wednesday, Jan 27, 2021

- 1. Equilibrium binding of two species: A protein (P) can bind with a short piece of DNA (D) to form the complex PD. Assume that there is fixed total amount of P and D, with concentrations $[P]_{tot}$ and $[D]_{tot}$ respectively. Find a general expression for the concentration of the complex, [PD]. We will show that when $[P]_{tot} \gg [D]_{tot}$, we recover the familiar form given in class.
 - (a) Write down the dissociation constant K_d in terms of the free concentrations of P, D and the complex PD.
 - (b) Write down the concentrations of total P and total D ([P]_{tot}, and [D]_{tot}) in terms of the free concentrations and the concentration of PD.
 - (c) Use your results from (b) to express the expression for K_d from (a) in terms of $[P]_{tot}$, $[D]_{tot}$ and [PD].
 - (d) Solve the expression for K_d from (c) for [PD].
 - (e) Suppose $K_d = 10$ nM. Plot the fraction of DNA occupied, $f \equiv [PD]/[D]_{tot}$, against $[P]_{tot}$ for $[P]_{tot} = 1 100$ nM, for $[D]_{tot} = 1, 10, 100$ nM.
 - (f) Show that for $[P]_{tot} \gg [D]_{tot}$, the fraction of DNA occupied is given approximately by $f \approx [P]_{tot}/(K_d + [P]_{tot})$. (Hint: It will be useful to use Taylor's expansion $\sqrt{1-x} \approx 1-x/2$ for $x \ll 1$.)
- 2. Protein-protein interactions: Two transcription factors A and B can bind in solution to form the complex AB with a dissociation constant of $K_{AB} = 2 \ \mu$ M. Transcription factor A is maintained at the level of 500 molecules per cell in the free form. Only the complex AB can bind to a target site in the genome of *E. coli*, characterized by an effective dissociation constant $K_{AB-DNA} = 6$ nM.
 - (a) Write equilibrium constants K_{AB} and K_{AB-DNA} in terms of the relevant protein concentrations.
 - (b) What should the cellular level of proteins B be in order for the target site be occupied 5% and 95% of the time?
 - (c) What would be the corresponding synthesis rates of protein B be if B is not degraded and the cells are growing exponentially at 60 min per doubling. (You may neglect the occurrence of multiple targets within a cell.)
 - (d) If instead, protein A can bind specifically to the target site by itself, with $K_{A-DNA} = 6$ nM, but protein B can bind to protein A only when A is already bound to the target site, what should the level of protein B be in order for the target site be occupied by

AB 5% and 95% of the time?

3. Binding energy matrix: Mnt is a dimeric transcription factor which binds to a 17bp DNA segment. The binding energy matrix $G_i(b)$ was measured by the Stormo lab and is reproduced below for the half site from position 10 to 17. The binding energies for the other half (position 1-8) can obtained as the *reverse complement* of those shown here. Position 9 is a neutral position which does not affect Mnt-DNA binding.

position	10	11	12	13	14	15	16	17
А	1.8	2.4	1.6	1.0	0	2.1	0.8	1.1
С	2.4	1.9	4.2	2.1	0.3	0	0	0
G	0	1.6	0	0	1.2	3.2	1.0	1.2
Т	3.0	0	2.2	2.2	0.6	2.2	0.7	0.3

(The numbers are expressed in units of $k_B T \approx 0.6$ kcal/mole)

- (a) Given that $G^{ns} G^* \approx 16k_BT$, find the effective dissociation constant \overline{K}^* for the strongest binder in the presence of genomic DNA that is $5 \cdot 10^6$ bp in length. [Hint: approximate the genomic DNA as a random string of nucleotides with equal distribution of $\{A, C, G, T\}$.]
- (b) Approximate the non-zero entries of the binding energy matrix by one parameter, ϵ , and find the smallest value of ϵ that would result in the same \widetilde{K}^* .
- (c) The target sequence is located within the following segment of DNA

5' - TCTACGATCCACTGTCGACTCGACTGCCGTAT - 3'

Compute and plot the binding energy $G_j = \min(G_j^{sp}, G^{ns})$ as a function of the position j, the position in the sample sequence that the first position of the Mnt motif aligns to. Repeat the plot for $G^{ns} - G^* \approx 30k_BT$. Attach your computer code (or show your method if performed otherwise) and comment on your findings.

4. Multiple target sites.

[Those who have not had a course in Statistical Mechanics need not do this problem.]

Suppose a transcription factor can bind to N_0 distinguishable target sites with the same specific binding free energy G_0 , and N additional distinguishable background sites with the non-specific binding free energy G_{ns} . Suppose that there are M TF molecules in the cell, with $N \gg \{M, N_0\}$, and assume all TFs are associated with the DNA. Derive an expression for the probability $P_A(M; N, N_0)$ that a particular target site, site A, is occupied by the following procedure.

- (a) Write down the Boltzmann weight W(M m, m) that M m proteins are bound to the background sites and m proteins are bound to the target sites.
- (b) Given that m proteins are bound to the N_0 target sites, what is the probability, $f(m, N_0)$, that the site A is occupied?
- (c) Argue that P_A is given by

$$P_A(M; N, N_0) = \frac{\sum_{m=0}^{N_0} f(m, N_0) W(M - m, m)}{\sum_{m=0}^{N_0} W(M - m, m)}$$

Simplify this expression for $M \gg N_0$ and cast it into the form $P_A = \frac{1}{1 + \widetilde{K}_A/M}$ [Hint: For $N \gg n$, $N!/(N-n)! \approx N^n$]

Find \widetilde{K}_A in terms of the other variables introduced above. On which variable does it not depend for $M \gg N_0$?

- (d) Would the dependence of \widetilde{K}_A on N_0 affect the "programmability" of the binding affinity?
- (e) Finally, we'll see just how large M needs to be before the above approximation becomes valid. Write the exact expression for \widetilde{K}_A starting from the full form of P_A for $N_0 = 2$ and show that it is dependent on M.

For $N = 10^7$ bp, and $G^{ns} - G_0 = 16k_BT$, plot \widetilde{K}_A as a function of M for $N_0 = 2$. Find the range of M where \widetilde{K}_A approaches the M-independent limit.