

5. Induction of TF
$$X + I \rightleftharpoons \frac{k_+}{k_-} XI$$

dissociation constant $K_I = \frac{[X] \cdot [I]}{[XI]} = \frac{k_-}{k_+}$
 $[X]_{tot} = [X] + [XI]$ $[XI] = [X]_{tot} \frac{[I]}{[I] + K_I} \bigoplus_{i=1}^{\infty} [X]_{tot} \frac{[I]_{tot}}{[I]_{tot} + K_I}$
usually $[I]_{tot} \gg [X]_{tot}$, so $[I] \approx [I]_{tot}$
will drop the subscript "tot" from here on
"activated TF" X^* = form of TF able to bind specifically to DNA
or able to activate RNAp
if $X^* = XI$, then $[X^*] = [X]_{tot} \frac{[I]}{[I] + K_I}$
if $X^* = X$, then $[X^*] = [X]_{tot} \frac{K_I}{[I] + K_I}$

- next consider two operators linked by the DNA backbone:

$$\begin{array}{c} \hline 03 \\ \hline \mathcal{L}_{13} \\ \hline \mathcal{L}_{12} \\$$

