
PHYSICS 239 Spatiotemporal Biodynamics 

Homework #1 

Due Wednesday Jan 19, 2022 

[Note: Those not from math/physics background need not attempt problem(s) indicated by *] 

 
1. Phase diagram and phase transitions in dynamical systems. In class, we studied a model of 
growth and predation. Let the density of an organism be 𝜌(𝑡). If the growth of the organism is 
described by a logistic term and the effect of predation by a hyperbolic term, then the dynamics 
is given by the following ODE, 

𝑑𝜌
𝑑𝑡 = 𝑟𝜌 ⋅ )1 −

𝜌
𝜌,- −

𝛿 ⋅ 𝜌

1 + 𝜌
𝜌!
	, 

where 𝑟 is the maximal replication rate and 𝛿 is the maximal predation rate. Of the two 
remaining parameters, 𝜌, describes the carrying capacity and 𝜌!  describes the saturating 
density for predation.  
 
Upon introducing dimensionless variables, 𝑢 ≡ 𝜌/𝜌,, 𝜏 = 𝑟𝑡, the above equation becomes 

𝑑𝑢
𝑑𝜏 = 𝑢 ⋅ (1 − 𝑢) −

𝛼𝑢

1 + 𝑢𝜅
	, 

with two dimensionless parameters   𝛼 ≡ 𝛿/𝑟 and 𝜅 ≡ 𝜌!/𝜌,. 
 
(a) Write a general expression for the fixed point 𝑢∗(𝜅, 𝛼) at which !!"𝑢 = 0, and show that the 
nature of the solution 𝑢∗ depends importantly on whether the relative predation rate 𝛼 is 
smaller or larger than  

𝛼#(𝜅) =
1
2 +

𝜅
4 +

1
4𝜅	. 

Show 𝛼#(𝜅) has a single minimum at 𝜅 = 1. The point (𝜅 = 1, 𝛼 = 𝛼$(𝜅 = 1)) is called the 
“critical point” due to the special behavior exhibited by the system in the vicinity of this point as 
we will see below.  

(b) For 𝜅 = 1, find 𝑢∗(𝛼) vs 𝛼. [Hint: There are two non-negative real values for 𝑢∗(𝛼) for 𝛼 <
𝛼#, and only one for 𝛼 > 𝛼$ . Ignore any imaginary solutions which are irrelevant.] To see which 
of the fixed points is stable/unstable, plot !!"𝑢 vs 𝑢 for 𝜅 = 1 and the following values of 𝛼:  
(i) 𝛼 ≲ 𝛼#(1), (ii) 𝛼 = 𝛼#(1), (iii) 𝛼 ≳ 𝛼#(1). For each case, plot the “flow”, i.e., the direction of 
!
!"𝑢, as arrows for different regions of 𝑢. The type of phase transition which occurs at the critical 
point here is called a “supercritical bifurcation”. 

(c) Sketch (i.e., plot the approximate dependence by hand, not by computer) the dependence 
of the stable fixed point 𝑢∗ in the vicinity of the critical point 𝛼#(𝜅 = 1). The robustness of the 
system can be characterized by the sensitivity of the density 𝑢∗ to small changes in the 



environment. Let 𝑆 ≡ !
!#𝑢

∗ be a measure of the change in population density when the 
predation rate changes. Sketch 𝑆(𝛼) in the vicinity (i.e., on both sides) of the critical point, and 
describe the behavior in words.   

(d) For 𝜅 = 1/2, show that there are three solutions for 𝑢∗(𝛼) for a range of 𝛼 at 𝛼% ≤ 𝛼 ≤
𝛼#(1/2), where 𝛼% is a positive number you need to determine. To see which of the solutions 
are stable/unstable, plot 𝑑𝑢/𝑑𝜏 vs 𝑢 for 𝜅 = 1/2 and the following values of 𝛼:  
(i) 𝛼 ≲ 𝛼#(1/2), (ii) 𝛼 = 𝛼#(1/2), (iii) 𝛼 ≳ 𝛼#(1/2), (iv) 𝛼 ≲ 𝛼%. (v) 𝛼 = 𝛼%.  (vi) 𝛼 ≳ 𝛼%.  
For each case, plot the “flow” as in (b). Indicate the stable and unstable fixed points which arise 
in each case. In cases where there are multiple stable fixed point for the same value 𝛼, what 
determines the value of 𝑢∗, the steady-state density?    

(e) For the nonzero stable fixed point 𝑢∗ obtained in (d), use Taylor expansion to obtain the 
leading dependence on 𝛼 in the vicinity of 𝛼#(1/2) and in the vicinity of 𝛼%. From these results, 
obtain the sensitivity 𝑆(𝛼) of this fixed point and sketch both 𝑢∗(𝛼) and 𝑆(𝛼) in the vicinity of 
𝛼#(1/2) and in the vicinity of 𝛼%. The type of phase transition which occurs at 𝛼#(1/2) is called 
a “saddle-point bifurcation”, while the phase transition which occurs at 𝛼% is called a 
“subcritical bifurcation”. Describe in words how they are different from each other and from 
the supercritical bifurcation encountered in (b).  

(f) For 𝜅 = 2, show that there are two non-negative solutions 𝑢∗(𝛼) for 𝛼 < 𝛼&, where 𝛼& is a 
number smaller than 𝛼#(𝜅 = 2), and one solution for 𝛼 > 𝛼&. Determine which of the fixed 
points is stable by plotting !!"𝑢 vs 𝑢 for 𝜅 = 2 and the following values of 𝛼: (i) 𝛼 ≲ 𝛼&, (ii) 𝛼 =
𝛼&, (iii) 𝛼 ≳ 𝛼&. For each case, plot the “flow” and indicate the stable and unstable fixed pointd 
as above. Using Taylor expansion, find the leading dependence of the stable fixed point 𝑢∗ on 𝛼 
in the vicinity of 𝛼&. From this result, find the sensitivity 𝑆(𝛼), and sketch 𝑢∗(𝛼), 𝑆(𝛼) in the 
vicinity of 𝛼&. The phase transition which occurs at 𝛼& is called a “transcritical bifurcation”. 
Describe in words again how it is different from the bifurcations encountered in (b) and (e).  

(g) Based on the results obtained in (a)-(f) above, sketch the phase diagram in the parameter 
space (𝜅, 𝛼) as follows: Draw the line (actually a curve) 𝛼#(𝜅) and put down the special points 
(𝜅, 𝛼) = B1, 𝛼#(1)C, D$%, 𝛼#B

$
%CE , B

$
%, 𝛼%C, (2, 𝛼&). With the additional knowledge that the critical 

values 𝛼% and 𝛼& are 𝜅-independent (you don’t need to derive this), you can obtain 2 lines that 
divide the entire parameter space into 3 distinct regions. Show the 2 lines in the space of (𝜅, 𝛼) 
and give a verbal description of the 3 “phases” separated by these lines. Indicate the nature of 
phase transitions (bifurcations) upon crossing each line separating the 3 phases. 
 
2. Oscillatory genetic circuit. A genetic circuit in a cell involves two transcription factors, an 
“activator”  and a “repressor”. The activator activates the expression of itself and the repressor, 
while the repressor represses the expression of the activator. This circuit is known as the 
“predator-prey” circuit.  Denoting the concentrations of the activator and repressor by [𝐴] and 
[𝑅], respectively, we can write down a simple set of equations describing their dynamics: 

𝑑[𝐴]
𝑑𝑡 = 𝛼'

[𝐴]
[𝐴] + 𝐾'

⋅
𝐾(

[𝑅] + 𝐾(
− 𝜇[𝐴], 



𝑑[𝑅]
𝑑𝑡 = 𝛼(

[𝐴]
[𝐴] + 𝐾'

− 𝜇[𝑅]	.																				 

In the above, the parameters 𝐾' and 𝐾(  are the dissociation constants for the binding of the 
activator and the repressor to the promoter regions, respectively, 𝛼' and 𝛼(  characterizes the 
activity of the two promoters, and 𝜇 is the rate of cell growth (which serves here to dilute the 
concentrations of the transcription factors.) In this problem, you will find conditions under 
which this circuit sustains oscillation.  
 
(a) Make these equations dimensionless using 𝑢 = [𝐴]/𝐾', 𝑣 = [𝑅]/𝐾(, and 𝜏 = 𝜇𝑡.  Write 
down the dependences of the two remaining dimensionless parameters, 𝜎' ∝ 𝛼' and 𝜎( ∝ 𝛼(, 
in terms of the original parameters of the problem.  

(b) In (𝑢, 𝑣) space, sketch the two null clines (i.e., the relation between 𝑢 and 𝑣 that makes 
)
)*
𝑢 = 0 or )

)*
𝑣 = 0. Indicate each sub-regions of (𝑢, 𝑣) space partitioned by the two null clines 

whether )
)*
𝑢 and )

)*
𝑣 are positive or negative. Sketch qualitatively the “flow“ of 𝑢 and 𝑣	by 

arrows in the (𝑢, 𝑣) space. 

(c) Find the fixed point(s) (𝑢∗, 𝑣∗) where )
)*
𝑢 = 0 and )

)*
𝑣 = 0. Show conditions on the 

parameters 𝜎' and 𝜎(  in order for there to be a “nontrivial” fixed point 𝑢∗ > 0 and 𝑣∗ > 0. 
Obtain how the nontrivial fixed point (𝑢∗, 𝑣∗) depends on the parameters (𝜎', 𝜎().  

(d) In the vicinity of the nontrivial fixed point obtained in (c), use Taylor expansion to linearize 
the dynamical equations for 𝑥(𝑡) = 𝑢(𝑡) − 𝑢∗, 𝑦(𝑡) = 𝑣(𝑡) − 𝑣∗. Find the two eigenvalues 𝜆 
for the linearized system. 

(e) Based on whether the eigenvalues 𝜆 found in (d) has nonzero imaginary component, and 
whether the real component of 𝜆 is positive or negative, find regions of the parameter space 
(𝜎', 𝜎() where you expect the circuit to exhibit stable oscillation, damped oscillation, or stable 
coexistence. 
 
3*. Rock-scissor-paper game.  This classic “game” involves 3 species, R, S, and P interacting in a 
population. S stimulates the growth of R while P stimulates the death of R. Also, P stimulates 
the growth of S while R stimulates the death of S, and R stimulates the growth P while S 
stimulates the death of P. Let 𝑝&, 𝑝+, 𝑝, denote respectively the frequency of R,S,P in a 
population, with 𝑝& + 𝑝+ + 𝑝, = 1. In the simplest case where the gain (cost) of winning 
(losing) is unity, the dynamics of the system is governed by the following ODEs: 

)
)-
	𝑝& = 𝑝& ⋅ (𝑝+ − 𝑝,) 

)
)-
	𝑝+ = 𝑝+ ⋅ (𝑝, − 𝑝&) 

)
)-
	𝑝, = 𝑝, ⋅ (𝑝& − 𝑝+) 

In this problem, you will work out the conditions under which the R-S-P game sustains 
oscillation. 
 



(a) Show that the above equations admit a conserved quantity, 𝑝& ⋅ 𝑝+ ⋅ 𝑝, = 𝐶, where 𝐶 is a 
positive constant fixed by the initial condition, i.e., 𝐶 = 𝑝&(0) ⋅ 𝑝+(0) ⋅ 𝑝,(0). 

(b) Introducing 𝑥. = 𝑝. − 1/3 to describe deviation from the symmetric point 𝑝& = 𝑝+ = 𝑝, =
1/3, write down the two constraints on 𝑝.  (on their sum and product) in terms of 𝑥.. Further 
introducing 𝑦 = 𝑝+ − 𝑝,, write down the constraint 𝑝& ⋅ 𝑝+ ⋅ 𝑝, = 𝐶 in terms of 𝑥& and 𝑦. (We 
will change 𝑥& to 𝑥 below to further simplify notation.) 

(c) From the constraint on 𝑥 and 𝑦 obtained in (b), show that there is a unique maximum for 
𝐶(𝑥, 𝑦) in the allowed space 0 < 𝑝. < 1. What is the value 𝐶% ≡ 𝐶(𝑥%, 𝑦%) at the maximum? 
and what does the location of the maximum (𝑥%, 𝑦%) corresponds to in terms of the frequencies 
𝑝.?  Show that for 𝐶 ≲ 𝐶% (i.e., for 0 < 𝐶% − 𝐶 ≪ 𝐶%), the stable orbits are ellipses centered at 
(𝑥%, 𝑦%), i.e., of the form 𝑎(𝑥 − 𝑥%)+ + 𝑏(𝑦 − 𝑦%)+ = 𝑐.  How does the size of the ellipse 
depend on the value of 𝐶% − 𝐶?  

(d) For an arbitrary value of the constant 𝐶 in the range 0 < 𝐶 < 𝐶%, show that 𝑥(𝑡) is bounded 
in the range 𝑥min(𝐶) and  𝑥max(𝐶) (in the sense that for the ellipse in (c), 𝑥(𝑡) is bounded 
between ±Z𝑐/𝑎 ). Find the values of  𝑥min and  𝑥max in the limit 𝐶 → 0 and show that the 
trajectory is composed of 3 straight-line segments in this limit. Express these segments in the 
original variables (𝑝&, 𝑝+, 𝑝,) and explain in words what is happening along each trajectory.  
Sketch this trajectory in the (𝑥, 𝑦) space, along with the direction of the dynamics. Add to the 
plot the ellipse in (c) obtained in the limit 𝐶 → 𝐶%. Finally, sketch your guess of what the 
trajectories should look like for intermediate values of 𝐶. 

(e) Bonus for the more mathematically inclined: Find the period of oscillation for 𝐶 → 0. You 
should be able to your answer in term of ln(1/𝐶). [Hint: You will need to obtain deviation of 
the trajectories from the straight-line segments, and most importantly, the turning points for 
small but non-zero 𝐶. As the 3 pieces are symmetrical, you just need to work out one of them.] 


