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1. Lotka-Volterra model of 2-species competition
In class, we discussed the LV model of 2-species competition, which takes on the following form for the dimensionless density
variables u1(t) = ρ1(t)/ρ̃11 and u2(t) = ρ2(t)/ρ̃22:

u̇1 = r1u1 · (1− u1 − a12u2) (1)

u̇2 = r2u2 · (1− u2 − a21u1) (2)

with the interaction parameters a12 and a21 both positive.

(a) In class, we discussed the case of strong competition with a12 > 1 and a21 > 1 using the graphic method. Here you
are asked to show the result algebraically, that the nontrivial fixed point u∗1 = (1 − a12)/(1 − a12a21), u∗2 =
(1− a21)/(1− a12a21) is an unstable attractor of the dynamics if a12 > 1 and a21 > 1. Show that of the remaining
3 fixed points, (u∗1 = 0, u∗2 = 0) is always unstable, while (u∗1 = 1, u∗2 = 0) and (u∗1 = 0, u∗2 = 1) are both stable
for this case of strong competition. Explain in words what it means that the overall system is “bistable” for a12 > 1 and
a21 > 1

Solution
To show algebraically if each of the fixed point is stable or unstable, we compute the Jacobian matrix of the
system:

J(u1, u2) =

∂u̇1
∂u1

∂u̇1
∂u2

∂u̇2
∂u1

∂u̇2
∂u2

 =

(
r1(1− 2u1 − a12u2) −r1a12u1

−r2a21u2 r2(1− 2u2 − a21u1)

)
and evaluate it in the fixed points. Normally we would compute the eigenvalues explicitly and check if they are
positive or negative, but in this case the computation of the eigenvalues can be complicated. To avoid this, we
use a slightly di�erent approach. Remember that the trace trM of any matrix M (which is the sum of all the
elements on the diagonal) is equal to the sum of its eigenvalues, while the determinant detM is equal to their
product, i.e.:

trM = λ1 + λ2 detM = λ1 · λ2
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Therefore, by checkng the signs of the trace and the determinant of a matrix, we can understand if one of the
eigenvalues is positive/negative without computing them explicitly.

Now, for the nontrivial fixed point we have:

J(u∗1, u
∗
2) =


r1(1−a12)
a12a21−1

r1a12(1−a12)
a12a21−1

r2a21(1−a21)
a12a21−1

r2(1−a21)
a12a21−1


The trace and the determinant of this matrix are:

tr J(u∗1, u
∗
2) =

r1(1− a12)

a12a21 − 1
+
r2(1− a21)

a12a21 − 1
=
r1(1− a12) + r2(1− a21)

a12a21 − 1
< 0

det J(u∗1, u
∗
2) =

r1r2(1− a12)(1− a21)(1− a12a21)

a12a21 − 1
< 0

(where the inequalities come from the fact that a12, a21 > 1). Therefore, since both the sum and the product
of the eigenvalues are negative, one of them is positive and one of them is negative. Since one of the eigenvalues
of the Jacobian matrix is positive, the fixed point is unstable.
Just as a reference, if we wanted to compute the eigenvalues of this matrix algebraically we would find:

λ± =
1

2(a12a21 − 1)

(
r1(1− a12) + r2(1− a21)±

±
√

[r1(a12 − 1) + r2(a21 − 1)]2 − 4r1r2(a12 − 1)(a21 − 1)(a12a21 − 1)
)

which is definitely a complicated expression to handle.
For (u∗1 = 0, u∗2 = 0) we have:

J(0, 0) =

(
r1 0
0 r2

)
This is a diagonal matrix, so we can say immediately that its eigenvalues are r1 and r2, which are both positive:
(u∗1 = 0, u∗2 = 0) is unstable.
For (u∗1 = 1, u∗2 = 0) we have:

J(1, 0) =

(
−r1 −r1a12

0 r2(1− a21)

)
whose trace and determinant are:

Tr J(1, 0) = r2(1− a21)− r1 < 0 detJ(1, 0) = −r1r2(1− a21) > 0

Since the product of the eigenvalues is positive but their sum is negative, both of them are negative and so the
fixed point is stable. As a reference, the eigenvalues of the Jacobian matrix in this case are λ1 = −r1 < 0 and
λ2 = r2(1− a21) < 0.
Similarly, for (u∗1 = 0, u∗2 = 1) we have:

J(0, 1) =

(
r1(1− a12) 0
−r2a21 −r2

)
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whose trace and determinant are:

tr J(0, 1) = r1(1− a12)− r2 < 0 detJ(0, 1) = −r1r2(1− a12) > 0

so also in this case both eigenvalues are negative (as a reference, λ1 = r1(1 − a12) < 0 and λ2 = −r2 < 0),
and the fixed point is stable.

When we say that the system is “bistable” for a12 > 1 and a21 > 1 we mean that the system exhibits two stable
fixed points, and the initial conditions will determine whether the system will end up in one or the other.

(b) Using the graphical method, sketch the phase flow in (u1, u2) space, to show that if a12 < 1 and a21 > 1, species 1 will
dominate and species 2 will be extinct. The case of a21 = 1 and a12 > 1 is borderline between the single species dominance
phase and the bistable phase of part (a). This borderline case might exhibit single species dominance or bistability. Sketch
the phase flow in (u1, u2) space for this case and show how either scenario might occur.
[Bonus for the more mathematically oriented: construct a mathematical argument to show which scenario would occur.
What about the case a21 = 1 and a21 < 1?]

Solution
First of all, if u2 = 0 we have u̇1 = r1u1(1− u1) and if u1 = 0 we have u̇2 = r2u2(1− u2), so the flow along
the axes will look like this:

u1

u2

(0, 0) (1, 0)

(0, 1)

Looking at the equations of the system, we will have:{
u̇1 > 0

u̇2 > 0
⇒

{
1− u1 − a12u2 > 0

1− u2 − a21u1 > 0
⇒

{
u2 <

1−u1
a12

u2 < 1− a21u1

where in the first step we have divided by u1 and u2 since u1, u2 6= 0. The two nullclines look like this:
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u1

u2

1
a21

1
a12

(0, 0) 1

1

These are the areas where u̇1 and u̇2 are positive/negative:

u1

u2

1
a21

1
a12

(0, 0) 1

1

u̇1 < 0

u̇1 > 0

u̇2 < 0

u̇2 < 0

u̇1 > 0

u̇2 > 0

and therefore this is the general behavior of the flow in the three areas:

u1

u2

1
a21

1
a12

(0, 0) 1

1

We can therefore see that, if u1(0), u2(0) 6= 0 the solutions will approach the region near the line that connects
the points (0, 1) and (1, 0) and then move towards (1, 0), i.e. the fixed point where species 1 dominates and
species 2 is extinct. As a reference, this is how the actual streamplot of the system looks like for r1 = r2 = 1,
a12 = 0.75 and a21 = 1.25:
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Therefore, as soon as u1(0) > 0 the system will always end up in the fixed point (u∗1 = 1, u∗2 = 0) where
species 1 dominates and species 2 is extinct.
Let us now consider the case a21 = 1, a12 > 1. In this case the nullclines look like this:

u1

u2

1
a12

(0, 0) 1

1

and the areas where u̇1 and u̇2 are positive/negative are:

u1

u2

1
a12

(0, 0) 1

1
u̇1 < 0
u̇2 < 0

u̇1 > 0
u̇2 > 0

u̇1 < 0
u̇2 > 0

so the general behavior of the flow is:
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Therefore, in this case the solutions of the system will always go towards (u∗1 = 0, u∗2 = 1), i.e., species 2
dominates and species 1 is extinct. This means that there can’t be bistability in the case a21 = 1 and a12 > 1.
This is how the actual streamplot of the system looks like for r1 = r2 = 1, a12 = 1.1 and a21 = 1:

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

u1

u
2

Let’s see how to show this mathematically. Let us Taylor expand the system around (u∗1 = 1, u∗2 = 0) by
defining

x := u1 − 1 y := u2

and rewriting the equations of the system. By ignoring all the terms beyond first order in x and y, we get:{
ẋ = −x− a12y

ẏ = y(−x− y)
⇒ d

dt
(ln y − x) = (a12−1)y ⇒ ln

y(t)

y(0)
−(x(t)−x(0)) = (a12−1)

∫ t

0
y(t′)dt′

The integral is always positive because y(t) = u2(t) > 0. Therefore, if a12 > 1 we have:

ln
y(t)

y(0)
−(x(t)−x(0)) = (a12−1)

∫ t

0
y(t′)dt′ > 0 ⇒ ln

y(t)

y(0)
> (x(t)−x(0)) ⇒ y(t) > y(0)ex(t)−x(0)

The plot of y(t) = y(0)ex(t)−x(0) is the following:
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Figure 1: Plot of y(t) as a function of x(t).

When a12 > 1, for any initial condition the solution will never go towards the fixed point (x∗ = 0, y∗ = 0) =
(u∗1 = 1, u∗2 = 0) because y(t) will always stay above the curve shown in figure 1. Therefore, there cannot be
bistability in this case1.
On the other hand, if a12 < 1 we have:

ln
y(t)

y(0)
−(x(t)−x(0)) = (a12−1)

∫ t

0
y(t′)dt′ < 0 ⇒ ln

y(t)

y(0)
< (x(t)−x(0)) ⇒ y(t) < y(0)ex(t)−x(0)

The solution will always stay below the curve in figure 1, so the only fixed point towards which we can go is
(x∗ = 0, y∗ = 0) = (u∗1 = 1, u∗2 = 0) and thus also in this case there cannot be bistability.

(c) For the special case a12 = a21 = 1, first show that any nontrivial fixed point must satisfy the constraint u∗1 + u∗2 = 1.
Further, show that there could be an infinite number of such nontrivial fixed points, each corresponding uniquely to the
initial condition (u1(0), u2(0)). [Hint: solve for the class of trajectories u2(u1) in the (u1, u2) space by writing down
an expression for du2/du1.]

Solution
Th equations of the system in this case are:{

u̇1 = r1u
∗
1(1− u∗1 − u∗2)

u̇2 = r2u
∗
2(1− u∗2 − u∗1)

The expression of the fixed points is:{
u̇1 = 0

u̇2 = 0
⇒

{
r1u
∗
1(1− u∗1 − u∗2) = 0

r2u
∗
2(1− u∗2 − u∗1) = 0

⇒ u∗1 + u∗2 = 1

where we have assumed u∗1, u
∗
2 6= 0. This is one linear equation in two variables, and as such admits infinite

solutions2: the fixed points will lie on the line that connects (u∗1 = 0, u∗2 = 1) to (u∗1 = 1, u∗2 = 0):

1Remember: a system is bistable if there are two (or more) possible stable fixed points, and the initial conditions determine in which
one we end up. Since we have just shown that we can never end up in one of the two fixed points of the system, there cannot be bistability.

2Remember: if you have in general a system of E linear equations in V variables, if V > E the system will admit infinite solutions
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u1

u2

(0, 0) 1

1

To show that each point on this line corresponds uniquely to a di�erent initial condition, let’s compute the
trajectories u2(u1) as the hint suggests:

du2

du1
=
r1u1(1− u1 − u2)

r2u2(1− u2 − u1)
=
r1u1

r2u2
⇒ du2

u2
=
r2

r1

du1

u1
⇒

⇒ ln
u2

u2(0)
=
r2

r1
ln

u1

u1(0)
⇒ u2(u1) = u2(0)

(
u1

u1(0)

)r2/r1

⇒

⇒ u2(u1) =
u2(0)

u1(0)r2/r1
(u1)r2/r1

where we have calledu1(0) andu2(0) = u2(u1(0)) the initial conditions. Therefore, the trajectories in (u1, u2)
space behave like powers of u1, and their “shape” will depend on if r1 > r2 or r2 > r1:

u1

u2
r2/r1 > 1

u1

u2

r2/r1 < 1

We can easily see that in both cases (r1 > r2 and r2 > r1) the trajectories will intersect the line of fixed points
u∗1 + u∗2 = 1 in a unique point:
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u1

u2
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1

The intersection between the curve and the line will be the fixed point towards which the system tends. Fur-
thermore, from the expression of the trajectories found above:

u2(u1) =
u2(0)

u1(0)r2/r1
(u1)r2/r1

We can see that by changing initial conditions we will change the curvature of the trajectory. Therefore, to each
initial condition corresponds a unique trajectory, and therefore a unique fixed point at the intersection with the
line u∗1 + u∗2 = 1.
As a reference, here is how the actual streamplot of the system looks like when a12 = a21 = 1:
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Figure 2: Streamplot of the system for r1 = 2, r2 = 1.
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Figure 3: Streamplot of the system for r1 = 1, r2 = 2.

(d) Continuing on the problem studied in part (c): suppose r1/r2 = 2. We start with initial condition u1(0) = 0.05 and
u2(0) = 0.05. What will the final densities u∗1, u

∗
2 be? Suppose we take this final population, dilute it by 10-fold and

start the process over again, what would the new final densities be? If we keep on iterating the process, every time with 10x
dilution, what would we eventually end up with? Explain in words what is happening in this process.
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Solution
With the given r1/r2 and initial conditions, the final fixed point (u∗1, u

∗
2) where we will end up is given by the

solution of:{
u∗1 + u∗2 = 1

u∗2 = 0.05√
0.05

√
u∗1 =

√
0.05u∗1

⇒ 1− u∗1 =
√

0.05u∗1 ⇒ (1− u∗1)2 = 0.05u∗1 ⇒

⇒ (u∗1)2 − 2.05u∗1 + 1 = 0 ⇒ u∗1 =
2.05±

√
2.052 − 4

2
=

2.05±
√

0.2025

2
=

2.05± 0.45

2

One of the solutions isu∗1 = 1.25, which is not acceptable because it doesn’t agree with the conditionsu∗1+u∗2 =
1. The other solution is u∗1 = 0.8 and therefore u∗2 = 0.2.
If we now dilute 10-fold, we will have (u1(0) = 0.08, u2(0) = 0.02) and repeating the same process we obtain
(u∗1 ≈ 0.93, u∗2 ≈ 0.07). If we do this repeatedly, overall we get:

(u∗1, u
∗
2)→ (0.8, 0.2)→ (0.93, 0.07)→ (0.98, 0.02)→ (0.99, 0.01)

It is therefore very clear that we are moving towards the fixed point (u∗1 = 1, u∗2 = 0), i.e. species 2 is going to
extinction. This is happening because species 1 grows twice as fast as species 2 (r1 = 2r2). Therefore, at every
dilution species 1 will grow much more than species 2, and the advantage of species 1 becomes larger at every
dilution until eventually only species 1 is left.

(e) Suppose you perform the same iterative process for the case a12 = 0.5, a21 = 0.5. What do you expect will happen? what
is the di�erence between this case and the one in (d)?

Solution
Since a12, a21 < 1 this is the case of weak competition, for which we have seen in class that there is one
nontrivial stable fixed point (because the two nullclines this time intersect in one point) given by:

u∗1 =
1− a12

1− a12a21
=

2

3
u∗2 =

1− a21

1− a12a21
=

2

3

Since this is the only nontrivial stable equilibrium of the system, the same iterative process outlined in (c) will
eventually lead the system to this fixed point where the two species coexist. Notice that this result does not
depend on the ratio r1/r2 (i.e., on the “intrinsic” growth rates of the two species): the competitive interaction
slows down species 1 enough to allow both species to coexist.

2. Lotka-Volterra model with mixed interaction
In this problem, we will work through the 2-species Lotka-Volterra model with mixed interaction, i.e. with species 1 retarding
the growth of species 2, and species 2 enhancing the growth of species 1. In terms of the parameters in Eqs. (1) and (2) above,
this corresponds to a21 > 0, a12 < 0. For convenience, we define a := a21 and b = −a12 so that both a and b are
positive.

(a) Sketch the phase flow for the two cases a > 1 and a < 1. Explain the nature of the fixed point in each region (i.e., what
phase of the 2-species system each corresponds to.) Describe the possible dynamical behaviors in each region.

Solution
The equations of the system are: {

u̇1 = r1u1(1− u1 + bu2)

u̇2 = r2u2(1− u2 − au1)
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Therefore, u̇1 and u̇2 will be positive when:{
1− u1 + bu2 > 0

1− u2 − au1 > 0
⇒

{
u2 >

u1−1
b

u2 < 1− au1

which also gives the expression of the nullclines of the system. For a > 1, the nullclines look like this:

u1

u2

1/a(0, 0) 1

1

where (u∗1 = 0, u∗2 = 0), (u∗1 = 0, u∗2 = 1) and (u∗1 = 1, u∗2 = 0) are the only fixed points, and where we have
also added the flow on the axes (which is determined exactly as in the previous problem).
Therefore, these are the areas of the (u1, u2) space where u̇1 and u̇2 are positive/negative:

u1

u2

1/a(0, 0) 1

1
u̇1 > 0
u̇2 < 0

u̇1 > 0
u̇2 > 0

u̇1 < 0
u̇2 < 0

and so the general behavior of the flow is:
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u1

u2

1/a(0, 0) 1

1

We can therefore guess that the flow of the system will always be directed towards the fixed point (u∗1 = 1, u∗2 =
0), i.e. to the fixed point where species 1 dominates and species 2 is extinct. In fact, the case a > 1 corresponds
to species 1 having a strong competitive e�ect on species 2, so even if the growth of species 2 would “help” species
1, the strong competitive interaction drives species 2 to extinction. As a reference, here is how the flow of this
system looks like for r1 = r2 = 1, a = 1.5 and b = 1 (with the nullclines superimposed):
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On the other hand, when a < 1 the nullclines look like this:

u1

u2

1/a(0, 0) 1

1
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and so now the system will exhibit a nontrivial fixed point where both species coexist. The expression of the
nontrivial fixed point this:

u∗1 =
1 + b

1 + ab
u∗2 =

1− a
1 + ab

This time, the general behavior of the flow is:

u1

u2

1/a(0, 0) 1

1

and so the solutions may oscillate3 towards the fixed point. In this case, since the competitive e�ect of species 1
on species 2 is weak, species 1 does not drive species 2 to complete extinction, and both species can coexist. As
a reference, this is how the actual streamplot of the system looks like for r1 = r2 = 1, a = 0.5 and b = 1:
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(b) Carry out perturbative analysis around the nontrivial fixed point for the case a < 1. Show that the fixed point is stable
by showing that the real parts of the associated eigenvalues are negative.

Solution
In order to show this, we first have to compute the Jacobian matrix of the system:

J(u1, u2) =

(
r1(1− 2u1 + bu2) r1bu1

−r2au2 r2(1− 2u2 − au1)

)
(3)

3This qualitative approach does not allow us yet to determine if the solutions indeed oscillate or not.
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and evaluate it in the nontrivial fixed point:

J(u∗1, u
∗
2) =

 −
r1(1+b)

1+ab
r1b(1+b)

1+ab

− r2a(1−a)
1+ab − r2(1−a)

1+ab


The trace and the determinant of this matrix are:

tr J(u∗1, u
∗
2) =

−r1(1 + b)− r2(1− a)

1 + ab
det J(u∗1, u

∗
2) =

r1r2(1− a)(1 + b)

1 + ab

and since we are considering the case a < 1:

tr J(u∗1, u
∗
2) < 0 detJ(u∗1, u

∗
2) > 0

Therefore, since the sum of the eigenvalues of J(u∗1, u
∗
2) is negative and their product is positive, they both have

negative real part and so (u∗1, u
∗
2) is indeed a stable fixed point.

Alternatively, we can compute the eigenvalues in the more “classical” way, i.e. by solving:

det(J(u∗1, u
∗
2)− λI) = 0 ⇒ det

−
r1(1+b)

1+ab − λ
r1b(1+b)

1+ab

− r2a(1−a)
1+ab − r2(1−a)

1+ab − λ

 = 0 ⇒

⇒ λ2 + λ
r1(1 + b) + r2(1− a)

1 + ab
+
r1r2(1 + b)(1− a)

1 + ab
= 0 ⇒

⇒ λ± =
1

2

(
−r1(1 + b) + r2(1− a)

1 + ab
±
√

∆

)
where the discriminant ∆ is:

∆ =
(r1(1 + b) + r2(1− a))2

(1 + ab)2
− 4

r1r2(1 + b)(1− a)

1 + ab

which can be rewritten as:

∆ =
r2

1(1 + b)2 + r2
2(1− a)2 − 2r1r2(1− a)(1 + b)(1 + 2ab)

(1 + ab)2

Now, the real part of the eigenvalues is:

Reλ± = −r1(1 + b) + r2(1− a)

2(1 + ab)
< 0

because a < 1. Therefore, both eigenvalues have negative real part, and the fixed point is stable.
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(c) Next examine the discriminant ∆ of the analysis in (b), which depends on the parameters a, b and r := r2/r1. Show
that if r = 1, the discriminant is never negative in the allowed phase space 0 < a < 1 and b > 0; hence, no oscillation
is expected. This can be done by finding the minima of ∆, located along a line a∗ = h(b), and showing that the minimum
value of ∆ is 0 along this line. Plot this line of minima a∗ = h(b) in the parameter space (a, b).

Solution
If we plug r1 = r2 := r in ∆, we get:

∆ =
r2

(1 + ab)2

[
(1 + b)2 + (1− a)2 − 2(1 + b)(1− a)(1 + 2ab)

]
=

[
r(a− b+ 2ab)

1 + ab

]2

Since ∆ is the square of an expression, it will never be negative, and can only be zero when:

a∗ − b+ 2a∗b = 0 ⇒ a∗ =
b

1 + 2b
:= h(b)

Since ∆ = 0 is the smallest value that the discriminant can take, the points on this line are all minima of ∆.
The plot of h(b) is:

b

a

a∗ = h(b)
1/2

Alternatively, if we wanted to use the “brute force” approach to show that those are the minima, we first must
show where the derivatives of ∆ with respect to a and b are null:

∂∆
∂a = 0

∂∆
∂b = 0

⇒


2r2 (1+b)2

(1+ab)3
(a− b+ 2ab) = 0

−2r2 (1−a)2

(1+ab)3
(a− b+ 2ab) = 0

⇒ a− b+ 2ab = 0 ⇒ a =
b

1 + 2b

In order to show that these points are minima, we have to compute the Hessian matrix of the system:

H(a, b) =

 ∂2∆
∂a2

∂2∆
∂a∂b

∂2∆
∂b∂a

∂2∆
∂b2

 =

=

2r2 (1+b)2

(1+ab)4

[
1 + 2b− 2ab+ 3b2 − 4ab2

]
2r2 (1−a)(1+b)

(1+ab)4
(−1− 3b+ 3a+ 5ab)

2r2 (1−a)(1+b)
(1+ab)4

(−1− 3b+ 3a+ 5ab) 2r2 (1−a)2

(1+ab)4
(1− 2a+ 3a2 − 2ab+ 4a2b)
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and then evaluate it along the curve a = b/(1 + 2b):

H∗ = H(b/(1 + 2b), b) =

 2r2 (1+2b)4

(1+b)4
−2r2 (1+2b)2

(1+b)4

−2r2 (1+2b)2

(1+b)4
2r2

(1+b)4


In order to show that the points in a = b/(1 + 2b) are minima, we have to show thatH∗ is positive semi-definite,
i.e. that the real parts of its eigenvalues are either positive or null.
The trace and determinant of H∗ are:

trH∗ =
2r2[1 + (1 + 2b)4]

(1 + b)4
> 0 detH∗ = 0

Since detH∗ = 0 one of the eigenvalues is null, and because trH∗ > 0 the other one is positive. Therefore,
H∗ is indeed positive semi-definite, and so all the points on the curve a∗ = b/(1 + 2b) are minima of ∆. If we
subsitute a = b/(1 + 2b) in the expression of ∆ we have ∆ = 0, and so the minimum value of ∆ is zero.

(d) For r slightly deviating from 1, i.e., for r = 1+ε where |ε| � 1, the value of the discriminant ∆(a, b; r) can be obtained
around r = 1 using Taylor expansion: Show that along the line a∗ = h(b), ∆ < 0 only if ε > 0 (i.e. , if r2 > r1).
Show further that the region of negative ∆ (which corresponds to damped oscillation) extends to some width δ(b) to either
side of the line a∗ = h(b). Show that this width is small for the entire range 0 > b >∞ if ε is small.

Solution
Since r2/r1 = 1 + ε, we can subsitute r2 = r + rε (where we have called r1 = r) in the expression of ∆ and
then neglect all terms beyond the first order in ε:

∆(1 + ab)2 = r2(1 + b)2 + (r + rε)2(1− a)2 − 2r(r + rε)(1− a)(1 + b)(1 + 2ab) =

= r2(1 + b)2 + r2(1− a)2− 2r2(1− a)(1 + b)(1 + 2ab) + 2r2ε(1− a)2− 2r2ε(1− a)(1 + b)(1 + 2ab) =

= r2(1 + b)2 + r2(1− a)2 − 2r2(1− a)(1 + b)(1 + 2ab) + 2r2ε
[
(1− a)2 − (1− a)(1 + b)(1 + 2ab)

]
⇒ ∆ =

r2(1 + b)2 + r2(1− a)2 − 2r2(1− a)(1 + b)(1 + 2ab)

(1 + ab)2︸ ︷︷ ︸
∆r=1

+

+
2r2ε

(1 + ab)2

[
(1− a)2 − (1− a)(1 + b)(1 + 2ab)

]
⇒

⇒ ∆ = ∆r=1 + 2ε

(
r

1 + ab

)2

(a− 1)(a+ b+ 2ab+ 2ab2)

where we have called ∆r=1 the expression of ∆ found in (c). If we now substitute a = b/(1 + 2b):

∆ = ∆r=1(b/(1 + 2b), b)︸ ︷︷ ︸
=0

+2ε
r2(

1 + b
1+2bb

)2

(
b

1 + 2b
− 1

)(
b

1 + 2b
+ b+ 2

b

1 + 2b
b+ 2

b

1 + 2b
b2
)
⇒
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⇒ ∆ = −ε 4br2

1 + b

Therefore, we will have ∆ < 0 if ε > 0. To find the width δ(b), we can Taylor expand the original expression
of ∆ around the points (a = b/(1 + 2b), r = 1) and see when ∆ < 0. Therefore, if we call r = 1 + ε and
a = b

1+2b + δ, we want to compute the following Taylor expansion:

∆ = δ
∂∆

∂a

∣∣∣∣
a= b

1+2b
,r=1

+ ε
∂∆

∂r

∣∣∣∣
a= b

1+2b
,r=1

+ · · ·

From what we have shown before, the derivative of ∆ with respect to awill always be null4 when a = b/(1+2b)
(since all the points on this line are minima):

∂∆

∂a

∣∣∣∣
a= b

1+2b
,r=1

= 0

Therefore, we have to go to the second order in the Taylor expansion:

∂2∆

∂a2

∣∣∣∣
a= b

1+2b
,r=1

=
2(1 + b)

(1 + b)2
r2

1

[
3b2(1 + b) + 2b2r(1− 3a− 2ab) + r2(1 + 3b− 2ab)

]∣∣∣∣
a= b

1+2b
,r=1

=

= 2
(1 + 2b)3

(1 + b)6
r2

1

[
r2(1 + 4b) + 2rb2(1− 2b) + 3b2(1 + 2b)

]∣∣∣∣
r=1

= 2r2
1

(1 + 2b)4

(1 + b)4

On the other hand, we have already Taylor expanded ∆ on a = b/(1 + 2b) around r = 1 so we already know
that:

∂∆

∂r

∣∣∣∣
a= b

1+2b
,r=1

= − 4br2
1

1 + b

Thus, the full Taylor expansion of ∆ around (a = b/(1 + 2b), r = 1) is:

∆ ≈ δ2

2

∂2∆

∂a2

∣∣∣∣
a= b

1+2b
,r=1

+ ε
∂∆

∂r

∣∣∣∣
a= b

1+2b
,r=1

=
δ2

2
· r2

1

(1 + 2b)4

(1 + b)4
− ε · 4br2

1

1 + b

Therefore, we will have ∆ < 0 when:

δ2

2
r2

1

(1 + 2b)4

(1 + b)4
< ε

4br2
1

1 + b
⇒ δ2 < ε · 8b (1 + b)3

(1 + 2b)4
⇒

⇒ −
√

8b(1 + b)3

(1 + 2b)2
·
√
ε < δ <

√
8b(1 + b)3

(1 + 2b)2
·
√
ε

4We can also show this explicitly:

∂∆

∂a

∣∣∣∣
a= b

1+2b
,r=1

= − 2(1 + b)

(1 + ab)3
r21

[
b(1 + b) + r(1 + 3ab + 2ab2) − r2(1 − a)

]∣∣∣∣
a= b

1+2b
,r=1

=

= −2r21
(1 + 2b)2

(1 + b)4
(1 − r)(b + 2b2 − r)

∣∣∣∣
r=1

= 0
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Now, if b is small we have: √
8b(1 + b)3

(1 + 2b)2
≈
√

8b+ · · ·

and so ∆ < 0 when:
−
√

8b ·
√
ε < δ <

√
8b ·
√
ε

When ε is small, this range will also be small. On the other hand, as b→∞ we have:√
8b(1 + b)3

(1 + 2b)2

b→∞−→ 1√
2

and thus ∆ < 0 when:

−
√
ε

2
< δ <

√
ε

2

Therefore, also when b is very large the range within which ∆ < 0 is narrow if ε is small.

(e) We learned from part (d) that the region of damped oscillation occurs as a narrow stripe around the line a∗ = h(b) for
r2 & r1 . Explain qualitatively why this occurs for r2 > r1 but not for r1 > r2. Does the dependence of this region
on a and b make sense? For r2 larger than and not too close to r1, this stripe actually expands to occupy a big part of the
parameter space in the allowed region 0 < a < 1 and b > 0. Demonstrate this by numerically solving the region where
∆(a, b; r) < 0 for r = 2.

Solution
The region of damped oscillations does not occur for r1 > r2 because species 1 slows down the growth of species
2, and so species 2 cannot help species 1 grows faster. On the other hand, when r2 > r1 species 2 wants to grow
faster than species 1, but as species 2 grows it helps species 1 grow faster, which in turn slows down species 2.
Therefore, in this case we can have damped oscillations, where species 2 makes species 1 grow faster until this
has a detrimental e�ect on species 2, and so on until the system reaches a fixed point.
The region where damped oscillations occur makes sense, because it looks like this:

b

a

l δ1/2

Here is a numerically obtained plot of the region where ∆ < 0 for r = 2, and for comparison also for r = 1.01:
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3. Relaxational oscillator
In class we discussed the FitzHugh-Nagumo model of relaxational oscillator. Consider the following form of the model:

v̇ = f(v)− w + Ia (4)

ẇ = ε(v − w) (5)

We will adopt the following form of f(v) that facilitates explicit solution:

f(v) =

{
v · (v − 1) for v ≤ 1

(2− v)(v − 1) for v ≥ 1

(a) Calculate the value and slope of f(v) at the mid-point v = 1 to verify the continuity of f(v) and f ′(v) at v = 1.
Sketch the null clines for Ia = 1/2, 1, 2 , and sketch the flow diagram for each case. Describe qualitatively what type of
dynamics you might expect the system to exhibit for each case (e.g., oscillation, threshold dynamics).

Solution
Let’s call for simplicity:

fL(v) = v(v − 1) fR(v) = (2− v)(v − 1)

Then we have:

fL(1) = 0 = fR(1)

{
f ′L(1) = 2v − 1|v=1 = 1

f ′R(1) = 3− 2v|v=1 = 1
⇒ f ′L(1) = f ′R(1) = 1

Therefore, f(v) is continuous and di�erentiable in v = 1. This is the plot of the function:
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v

f(v)

0

1 2

In general, the nullclines of the system are given by:{
v̇ = 0

ẇ = 0
⇒

{
w = f(v) + Ia

w = v

For Ia = 1/2, this is how the nullclines look like:

v

w

Since v̇ > 0 when w < f(v) + Ia and ẇ > 0 when w < v, the general behavior of the flow of the system is:

v

w

Ia = 1/2

v

w

Ia = 1

v

w

Ia = 2

Given what we’ve seen in class, we can expect the cases Ia = 1/2 and Ia = 2 to exhibit threshold dynamics,
and the trajectories will tend towards the fixed point (i.e., the intersection of the nullclines). For example, if
Ia = 1/2 and we start from the following point:
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v

w

We expect the trajectories to look like this:

v

w

and similarly for Ia = 2. However, for Ia = 1 the trajectories will look like this:

v

w

and so in this case we will not have threshold dynamics, but oscillations.
To sum up, the system exhibits threshold dynamics for Ia = 1/2 and Ia = 2, and oscillations for Ia = 1.
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These are the actual streamplots of the system with ε = 0.05 (the nullclines are superimposed for reference):
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(b) Work out the eigenvalues of perturbative dynamics around the nontrivial fixed point associated for arbitrary Ia. Find the
range of Ia where the system is expected to exhibit a stable limit cycle.
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Solution
First, let’s write v∗ (i.e., the value of v at the fixed point) as a function of Ia:{

v̇ = f(v)− w + Ia = 0

ẇ = ε(v − w) = 0
⇒

{
w = f(v)− Ia
w = v

⇒ f(v)− Ia = v ⇒

⇒

{
v2 − v − Ia = v v ≤ 1

2v − 2− v2 + v − Ia = v v ≥ 1
⇒

{
v2 − 2v + Ia = 0 v ≤ 1

v2 − 2v − Ia + 2 = 0 v ≥ 1
⇒

⇒

{
v∗ = 1

2

(
2±
√

4− Ia
)

v ≤ 1

v∗ = 1
2 (2± 4− 4(2− Ia)) v ≥ 1

⇒

{
v∗ = 1±

√
1− Ia v ≤ 1

v∗ = 1±
√
Ia − 1 v ≥ 1

Therefore, the only acceptable solutions are:

v∗ = 1−
√

1− Ia for v ≤ 1, Ia < 1 v∗ = 1 +
√
Ia − 1 for v ≥ 1, Ia > 1

In other words, when Ia < 1 the only fixed point is w∗ = v∗ = 1 −
√

1− Ia < 1, while when Ia > 1 it is
w∗ = v∗ = 1 +

√
Ia − 1 > 1. Thus, we have:

f ′(v∗) =
df

dv

∣∣∣∣
v=v∗

=

{
2v∗ − 1 v∗ ≤ 1

3− 2v∗ v∗ ≥ 1
⇒ f ′(v∗) = 1− 2

√
|Ia − 1|

Therefore, the Jacobian matrix of the nontrivial fixed point is:

J =

(
f ′(v∗) −1
ε −ε

)
=

(
1− 2

√
|Ia − 1| −1
ε −ε

)
The eigenvalues of this matrix are:

λ± =
1

2

[
1− 2

√
|Ia − 1| − ε±

√(
ε− 1− 2

√
|Ia − 1|

)2
− 8ε(1−

√
|Ia − 1|)

]

We will have a stable limit cycle when Reλ± > 0, i.e. when 1− 2
√
|Ia − 1| − ε > 0 (an equivalent way to get

to the same result is to check when tr J > 0):

1− 2
√
|Ia − 1| − ε > 0 ⇒

√
|Ia − 1| < 1− ε

2
⇒ |Ia − 1| <

(
1− ε

2

)2

⇒

⇒ 1 ≤ Ia < 1 +

(
1− ε

2

)2

or 1−
(

1− ε
2

)2

< Ia ≤ 1 ⇒

⇒ 1−
(

1− ε
2

)2

< Ia < 1 +

(
1− ε

2

)2
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Notice that this is an interval centered around Ia = 1, which as we showed above is the only case where the
trajectories eventually tend towards the same one, i.e. the system exhibits a stable limit cycle.
Notice also that in this case it is su�cient to show that tr J > 0 for limit cycle to be stable, and we don’t need
to check the discriminant. In fact, since tr J > 0 at least one of the eigenvalues will be positive and therefore
the fixed point will be unstable. This means that, if we start from a point close to the fixed point, the solution
will move away from it until it follows the limit cycle:

v

w

Therefore, the limit cycle will be stable because the solutions will approach it from both “sides” (i.e., both from
the “outside” and the “inside”).

(c) The stable limit cycles found in (b) becomes relaxational oscillation if the parameter ε in Eq. (5) is very small. For the case
Ia = 1, work out the values of f(v) at its local minimum and maximum, denoted fmin and fmax, respectively, and write
down the four pieces of the trajectory of the corresponding limit cycle in the limit of small ε. Indicate which pieces correspond
to slow and fast dynamics. Find the period of the oscillation by assuming the time spent on the fast-legs are negligible and
work out the time spent on the slow-legs. The latter can be done by directly integrating the equation of motion for the slow
variable. [Hint: you should get a definite integral of the form

∫
dx/(x+ b

√
x+ c) which you can look up or leave as is.]

Solution
To find the local minimum and maximum of f(v), we have to solve:

0 = f ′(v) =

{
2v − 1 v ≤ 1

3− 2v v ≥ 1
⇒ v∗ =

1

2
v∗ =

3

2

and therefore:

fmin = f

(
1

2

)
= −1

4
fmax = f

(
3

2

)
=

1

4

As shown above, in this case for ε→ 0 the limit cycle looks like:
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v

w

(
3
2 + 1√

2
, 3

4

)
(

3
2 ,

5
4

)
(

1
2 −

1√
2
, 5

4

)
(

1
2 ,

3
4

) A
B

C
D

where we have called A, B, C , D the four legs of the trajectory.
The slow-legs of the trajectory are A and C , because along them we have v̇ = 0 (since we are on a nullcline)
and ẇ is small because ẇ ∝ ε and ε is small. Therefore, B and D are the fast-legs of the trajectory.
Let us write the four legs of the trajectory explicitly. B and D are horizontal lines, so on them we have:

B : w = f

(
3

2

)
+ 1 =

5

4
for

1

2
− 1√

2
≤ v ≤ 3

2

D : w = f

(
1

2

)
+ 1 =

3

4
for

1

2
≤ v ≤ 3

2
+

1√
2

On the other hand, on A and C we have v̇ = 0 and so w = f(v) + Ia:

A : w = (2− v)(v − 1) + 1 = −v2 + 3v − 1 ⇒ v2 − 3v + 1 + w = 0 ⇒

⇒ v =
3±

√
9− 4(1 + w)

2
=

3

2
±
√

5

4
− w

However, since v ≥ 3/2 (on leg A we have 3/2 ≤ v ≤ 2), the only acceptable solution is:

A : v =
3

2
+

√
5

4
− w for

3

2
≤ v ≤ 2

Similarly, for C :

C : w = v(v−1)+1 = v2−v+1 ⇒ v2−v+1−w = 0 ⇒ ⇒ v =
1±

√
1− 4(1− w)

2
=

1

2
±
√
w − 3

4

and since now we have 0 ≤ v ≤ 1/2, the only acceptable solution is:

C : v =
1

2
−
√
w − 3

4
for 0 ≤ v ≤ 1

2
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Let’s now compute the (approximate) period of the oscillations. We neglect the fast-legs (since the dynamics of
the system is much faster there then on the slow-legs), and so we want to determine how long it takes the system
to go through A and C . Let’s start with A. From the equation for ẇ in this case we have:

dw

dt
= ε(v − w) = ε

(
3

2
+

√
5

4
− w − w

)

We can solve this equation by separating the variables:

dw

3
2 +

√
5
4 − w − w

= εdt ⇒
∫ 5/4

3/4

dw

3
2 +

√
5
4 − w − w

= ε

∫ tA

0
dt ⇒ tA =

1

ε

∫ 5/4

3/4

dw

3
2 +

√
5
4 − w − w

where we have called t0 = 0 and tA, respectively, the instants at which we start and finish moving on legA. We
can call IA the integral, so that tA = IA/ε. Let’s see however how we can compute it. We can simplify it by
defining s := 5

4 − w, so that:

tA =
1

ε

∫ 1/2

0

ds
1
4 + s+

√
s

If we again define u :=
√
s, we get:

tA =
1

ε

∫ 1/
√

2

0

2udu

u2 + u+ 1
4

=
1

ε

∫ 1/
√

2

0

2udu(
u+ 1

2

)2
Again, we subsitute x := u+ 1/2 to obtain:

tA =
1

ε

∫ 1/2+1/
√

2

1/2

(2x− 1)dx

x2
=

∫ 1/2+1/
√

2

1/2

(
2dx

x
− dx

x2

)
=

1

ε

[
2 lnx+

1

x

]∣∣∣∣1/2+1/
√

2

1/2

⇒

⇒ tA =
2

ε

(√
2− 2 + ln(1 +

√
2)
)

Similarly, on leg C we have:

dw

dt
= ε

(
1

2
−
√
w − 3

4
− w

)
⇒

∫ 3/4

5/4

dw

1
2 −

√
w − 3

4 − w
= ε

∫ tC

0
dt ⇒

⇒ tC =
1

ε

∫ 3/4

5/4

dw

1
2 −

√
w − 3

4 − w

We call this integral IC , so that tC = IC/ε. If we want to compute it, we can define s := w − 3/4 to obtain:

tC =
1

ε

∫ 1/2

0

ds
1
4 +
√
s+ s
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The integral that appears here is the same as the one we computed above, so:

I := IA = IC = 2
(√

2− 2 + ln(1 +
√

2)
)

Therefore, the total period T of the oscillations will be (approximately):

T ≈ tA + tC =
2I
ε

=
4

ε

(√
2− 2 + ln(1 +

√
2)
)
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