
PHYSICS 239 Spatiotemporal Biodynamics 

Homework #2 

Due Wednesday February 2, 2022 

[Note: Those not from math/physics background need not attempt problem(s) indicated by *] 

 
1. Lotka-Volterra model of 2-species competition. In class, we discussed the LV model of 2-
species competition, which takes on the following form for the dimensionless density variables 
𝑢!(𝑡) = 𝜌!(𝑡)/𝜌(!! and 𝑢"(𝑡) = 𝜌"(𝑡)/𝜌("": 

𝑢!̇ = 𝑟!𝑢! ⋅ (1 − 𝑢! − 𝑎!"𝑢"), (1) 

𝑢"̇ = 𝑟"𝑢" ⋅ (1 − 𝑢" − 𝑎"!𝑢!), (2) 

with the interaction parameters 𝑎!" and 𝑎"! both positive.  

(a) In class, we discussed the case of strong competition with 𝑎!" > 1 and 𝑎"! > 1 using the 
graphic method. Here you are asked to show the result algebraically, that the nontrivial fixed 
point at 𝑢!∗ = (1 − 𝑎!")/(1 − 𝑎!" ⋅ 𝑎"!), 𝑢"∗ = (1 − 𝑎"!)/(1 − 𝑎!" ⋅ 𝑎"!) is an unstable 
attractor of the dynamics if 𝑎!" > 1 and 𝑎"! > 1. Show that of the remaining 3 fixed points, 
(𝑢!∗ = 0, 𝑢"∗ = 0) is always unstable, while (𝑢!∗ = 1, 𝑢"∗ = 0) and (𝑢!∗ = 0, 𝑢"∗ = 1) are both 
stable for this case of strong competition. Explain in words what it means that the overall 
system is “bistable” for 𝑎!" > 1, 𝑎"! > 1.  

(b) Using the graphical method, i.e., sketch the phase flow in (𝑢!, 𝑢") space, to show that if 
𝑎!" < 1 and 𝑎"! > 1, species 1 will dominate and species 2 will be extinct.  The case of 𝑎"! = 1 
and 𝑎!" > 1 is borderline between the single species dominance phase and the bistable phase 
of part (a). This borderline case might exhibit single species dominance or bistability.  Sketch 
the phase flow in (𝑢!, 𝑢") space for this case and show how either scenario might occur.  

[Bonus for the more mathematically oriented: construct a mathematical argument to show 
which scenario should occur. What about the case 𝑎"! = 1 and 𝑎"! < 1?] 

(c) For the special case 𝑎!" = 𝑎"! = 1, first show that any nontrivial fixed point must satisfy the 
constraint 𝑢!∗ + 𝑢"∗ = 1. Further, show that there could be an infinite number of such non-trivial 
fixed points, each corresponding uniquely to the initial condition 𝑢!(0), 𝑢"(0). [Hint:  Solve for 
the class of  trajectories 𝑢"(𝑢!) in the (𝑢!, 𝑢") space by writing down an expression for  $%!

$%"
.] 

(d) Continuing on the problem studied in part (c): Suppose 𝑟!/𝑟" = 2. We start with initial 
condition 𝑢!(0) = 0.05 and 𝑢"(0) = 0.05. What will the final densities 𝑢!∗ , 𝑢"∗  be? Suppose we 
take this final population, dilute it by 10-fold and start the process over again, what would the 
new final densities be? If we keep on iterating the process, every time with 10x dilution, what 
would we eventually end up with? Explain in words what is happening in this process.  

(e) Suppose you perform the same iterative process for the case 𝑎!" = 0.5, 𝑎"! = 0.5, what do 
you expect will happen? What is the difference between this case and the one in (d)? 
  



2*. Lotka-Volterra model with mixed interaction. In this problem, we will work through the 2-
species Lotka-Volterra model with mixed interaction, i.e., with species 1 retarding the growth of 
species 2, and species 2 enhancing the growth of species 1. In term of the parameters in Eqs. (1) 
and (2) above, this corresponds to 𝑎"! > 0, 𝑎!" < 0. For convenience, we define 𝑎 ≡ 𝑎"! and 
𝑏 ≡ −𝑎!" such that both 𝑎 and 𝑏 are positive. 

(a) Sketch the phase flow for the two cases 𝑎 > 1 and 𝑎 < 1. Explain the nature of the fixed 
point in each region (i.e., what phase of the 2-species system each corresponds to.) Describe 
the possible dynamical behaviors in each region.  

(b) Carry out perturbative analysis around the nontrivial fixed point for the case 𝑎 < 1. Show 
that the fixed point is stable by showing that the real parts of the associated eigenvalues are 
negative. 

(c) Next examine the discriminant Δ of the analysis in (b), which depends on the parameters 
𝑎, 𝑏, and 𝑟 ≡ 𝑟"/𝑟!. Show that if 𝑟 = 1, the discriminant is never negative in the allowed phase 
space  0 < 𝑎 < 1 and 𝑏 > 0; hence, no oscillation is expected. This can be done by finding the 
minima of Δ, located along a line 𝑎∗ = ℎ(𝑏), and showing that the minimum value of Δ is 0 
along this line. Plot this line of minima 𝑎∗ = ℎ(𝑏) in the parameter space (𝑎, 𝑏).  

(d) For 𝑟 slightly deviating from 1, i.e., for 𝑟 = 1 + 𝜀 where |𝜀| ≪ 1, the value of the 
discriminant Δ(𝑎, 𝑏; 𝑟) can be obtained around 𝑟 = 1 using Taylor expansion: Show that along 
the line 𝑎∗ = ℎ(𝑏), Δ < 0 only if 𝜀 > 0 (i.e., if 𝑟" > 𝑟!). Show further that the region of negative 
Δ (which corresponds to damped oscillation) extends to some width 𝛿(𝑏) to either side of the 
line 𝑎∗ = ℎ(𝑏).	Show that this width is small for the entire range 0 > 𝑏 > ∞ if 𝜀 is small. 

(e) We learned from part (d) that the region of damped oscillation occurs as a narrow stripe 
around the line 𝑎∗ = ℎ(𝑏) for 𝑟" ≳ 𝑟!. Explain qualitatively why this occurs for 𝑟" > 𝑟! but not 
for 𝑟! > 𝑟". Does the dependence of this region on 𝑎 and 𝑏 make sense? For 𝑟" larger than and 
not too close to 𝑟!, this stripe actually expands to occupy a big part of the parameter space in 
the allowed region 0 < 𝑎 < 1 and	𝑏 > 0. Demonstrate this by numerically solving the region 
where Δ(𝑎, 𝑏; 𝑟) < 0 for 𝑟 = 2. 
 

3*. Relaxational oscillator. In class we discussed the FitzHugh-Nagumo model of relaxational 
oscillator. Consider the following form of the model: 

𝑣̇ = 𝑓(𝑣) − 𝑤 + 𝐼& , (3) 

𝑤̇ = 𝜖 ⋅ (𝑣 − 𝑤). (4) 

We will adopt the following form of 𝑓(𝑣) that facilitates explicit solution:  

𝑓(𝑣) = H	𝑣 ⋅
(𝑣 − 1)											 for		𝑣 ≤ 1

(2 − 𝑣) ⋅ (𝑣 − 1) for	𝑣 ≥ 1		 

(a) Calculate the value and slope of 𝑓(𝑣) at the mid-point 𝑣 = 1 to verify the continuity of 𝑓(𝑣) 
and 𝑓′(𝑣) at 𝑣 = 1. Sketch the null clines for 𝐼& = 1/2, 1, 2	, and sketch the flow diagram for 
each case.  Describe qualitatively what type of dynamics you might expect the system to exhibit 
for each case (e.g., oscillation, threshold dynamics).  



(b) Work out the eigenvalues of perturbative dynamics around the non-trivial fixed point 
associated for arbitrary 𝐼&. Find the range of 𝐼& where the system is expected to exhibit a stable 
limit cycle.  

(c) The stable limit cycles found in (b) becomes relaxational oscillation if the parameter 𝜖 in 
Eq. (4) is very small.  For the case 𝐼& = 1, work out the values of 𝑓(𝑣) at its local minimum and 
maximum, denoted 𝑓min	and 𝑓max, respectively, and write down the four pieces of the trajectory 
of the corresponding limit cycle in the limit of small 𝜖. Indicate which pieces correspond to slow 
and fast dynamics.   Find the period of the oscillation by assuming the time spent on the fast-
legs are negligible and work out the time spent on the slow-legs. The latter can be done by 
directly integrating the equation of motion for the slow variable. [Hint: you should get a definite 
integral of the form ∫ 𝑑𝑥/[𝑥 + 𝑏√𝑥 + 𝑐]	which you can look up or leave as is.]  

 


