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Proteome allocation and the Monod growth law

In class we went over key elements of the proteome allocation analysis for bacterial growth. In this problem, you will work
them out step-by-step using a concrete example, for the growth of E. coli on lactose as the sole carbon source. From a few
assumptions, we will obtain quantitatively the growth rate and the expression of the lac operon for different concentrations
of lactose, i.e., Monod’s growth law and the phenomenon of catabolite repression.

In the following, all quantities correspond to amount contained in 1-mL of exponentially growing culture at optical density
(OD) = 1, referred to as “OD- mL” for short. 1 OD- mL of culture corresponds to 108 ~ 10 bacterial cells depending
on the specific culturing condition. We will refrain from using per cell quantity because the amount per cell can vary 10x
due to change of cell size in different growth conditions (including for cells grown in different lactose concentrations to be
studied here). Instead, amount per OD- mL is more invariant. In particular, 1 OD- mL of culture contains a total dry mass
of ~ 0.5 mg and total cytoplasmic water content of ~ 1 mg (or 1 puL in volume) for most conditions characterized. The
total protein content in OD- mL varies modcmtcly, from 0.3 mg at fast growth t0 0.4 mg at slow gmwth. For simplicity,
we will take total protein per OD- mL to be 0.35 mg.

Deftnition of symbols to be used below: Nx and Mx are, respectively, the number and mass of protein X per OD- mL
culture. M = 0.35 mg is the total mass of cellular proteins per OD- mL of culture. mx is the molecular wcight of protein
X. ¢x = Mx /M is the mass fraction of protein X among all cellular proteins; it is referred to as the “proceome fraction”,
a measure of “protein abundance”.

Conversion between proteome fraction and concentration: The average intracellular concentration of a protein X, denoted
as [ X, can be taken as the number of proteins in OD- mL, Nx , divided by the rotal cytoplasmic water volume in OD-
mL, V. Derive a relation between the concentration [ X and the proteome fraction ¢x in terms of the molecular weight
mx. For typical proteins 300 aa in lcngth, ﬁnd its concentration in M if the proteome fmcrion is 1% (parr per thousand).
You can take the average mass of an amino acid to be 110 Daltons.

[Note: Below we will only refer to protein concentrations as proteome fractions. It turns out that the latter is more readily
obtained experimentally, eg., by proteomics or by ribosome-profiling. It is also a natural quantity to work with in models.
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The above exercise is meant to let you know that you can always convert proteome fraction to a more familiar concentration
unit, eg., ptM.]

Solution

From the definition of [X] we have:

_ Nx
TV

Furthermore, since mx is the molecular wcight ofprotcin X we also have:

[X]

M
Ny = —=%
mx
Therefore: y:
X
X]=—-
[X] Vo mg
If we now multiply and divide by M:
1 1 M M 1 M M
X]= Lo LMy My 1 M ox M 9x gems
|4 M mx M mx |4 mx Vv mx /LL
S [X]= 2X 3s™E
mx uL

Now, since the average mass of an amino acid is 110 Da, we have that 1 mole of amino acids will weight 110
grams, and so the molecular Wcight mx ofprotcin X will be:

110 g 0.11 mg
U8 Iy
1 mol 1 pmol

where L is the length of the protein (in number of amino acids). Therefore:

_ ¢x lpmol 035mg ¢x 1lpumol | = ¢x Px

X == R 3=-—".-3M=—-""-3000 mM
XI= 1 011mg 1pul Ly 1puL Lx Lx "
If we now use ¢px = 1% = 1072 and Lx = 300:
1073 5

Protein synthesis flux by ribosomes: Let Jg denote the flux of protein synthesis, in unit of # aa polymerized per OD- mL
of culture. For a culture growing exponenfially at the speciﬁc rate , this is just T - M (with the rotal protein mass M
expressed in # aa/(OD- mL)). Molecularly, protein synthesis flux can be written as the product of the ribosome elongation
rate (denoted as €) and Ng, the total number of ribosomes per OD- mL of culture. [Here we have assumed that all ribosomes
are engaged in translation at the same speed. This turns out to be a reasonably good approximation, breaking down only at
very slow growth.|

i. Show that the above leads to the growth law
r

~kr

where pr = Mp /M is the proteome fraction of ribosomal proteins, Mg being the total mass of r-proteins per OD-

OR (1)

mL of culture. Express kg in terms of € and mp , the weight of all r-proteins in a ribosome.



ii. Adding up all r-proteins in the ribosome of E. coli gives 7336 aa. However, for the ribosomes to do its job, many
helper proteins such as elongation factors are also needed. These proteins add up to another 60% in mass. Thus, we
can take the “molecular weight” of an effective ribosome as mp = 1.6 X 7336 aa. Further using the measured
elongation rate of € = 16 aa/s, find the value of kg in unit ofh_l,

iii. What is the theoretical maximum growth rate ifa cell contains only ribosomes? What is the corresponding doubling
time? [Note the factor of In 2 in the conversion.| The fastest doubling time observed for E. coli is ~ 17 min, when
the culture contains many nutrient ingr@dienfs including all amino acids and nucleorides. What is the cow‘esponding
ribosomal fraction ¢ g at this fastest growth rate? The remaining fraction of the proteome (¢pg) found at the fastest
growth rate, are comprised of obligatory proteins needed for house-keeping functions. Empirically, ¢ is found to be
approximately growth-rate independent even though ¢ g changes according to Eq. (1.

Solution

i. From its definition, we have:

M
Jp=rM Jp = eNp = e—2
mp
Therefore: M
€ R r €
=— — = = — h kp = —
r mn M ORr I where kg o

ii. We have:

€ 16 aa/s

— = ~14-10%st'=14-10"3%. bl ~ 5h-1
mr 1.6 x 7336 aa 07"s 072 - 3600 5

kg =
iii. Ifacell only contains ribosomes we have o = 1, so that e = kr = 5 h~=!. The corresponding doubling
time is Taxy = I 2/7 50 &~ 0.14 h &~ 8 min.
The fastest observed growth rate is T = In2/17 min & 2.45 h™1, and its corresponding ribosomal
fraction is pp = 2.45 h_1/5 h~! = 0.5 = 50%. Therefore, »g = 50%.

(¢c) Carbon uptake ﬂux: Consider growth of E. coli in minimal medium with a single carbon source, without the supplemcnt
of amino acid and other substances. Let Jc denote the flux of carbon uptake, in unit of # substrate molecule taken up per
time per OD- mL. Molecularly, this can be written as the product of wg, the specific rate of the uptake enzyme E, and N,
the number of uptake enzymes per OD- mL of culture.

i. Express Jo in term of the proteome fraction of the uptake enzyme, ¢ = Mp /M, and the molecular weight of the
uptake enzyme, mp.

ii. The condition of flux balance can be stated as Jp =Y - Jc, where the yield Y represents the conversion factor from
the substrate molecule to aa. Using flux balance and the expression you obtained above for Jr and Jc, derive the
relation ¢ = r/kg and find an expression for the parameter kg in terms of the molecular parameters (wg, mg)
and the yield Y .

iii. Consider the case where lactose is the sole carbon substrate. 1 g of lactose is known to produce 0.5 g of dry mass.
Based on the protein:dry mass ratio given above, work out the value of Y for lactose. Express it in unit of # aa/lactose
molecule and in OD/mM lactose.

iv. Given that the specific uptake rate for the lactose cransporter (LacY, the lac permease, 417aa in length) is wg = 3/s
in saturating lactose concentration, write down the value of kg for lactose uptake in unit of L.

Solution



i. We have: M M
Jo =wpNp = wp—2 - — = W7E¢EM
meg M meg

ii. By using Jgr = rM and the expression of J¢ found above, we have:

r

TM:le¢EM = ¢op=-— where kE:Yw—E

iii. By definition:
0.5 g dry mass

y —
1 g lactose

With the data provided at the beginning, the protein:dry mass ratio is 0.35/0.5 = 0.7. Therefore:

v — 0.5 - 0.7 g protein mass _ 0.35 g protein mass

lg lactose - lg lactose

Since the mass of an amino acid is 110 Da, we have that 1 mol aa = 110 g; therefore, 0.35 g of protein
mass are equal to (0.35/110) mol ~ 3.2 mmol of amino acids. On the other hand, the molecular weight
of lactose is 342.3 g, and so 1 g of lactose is equal to 2.9 mmol of lactose. Therefore:

B 0.35 g protein mass - 3.2 mmol aa N aa

Yy =

1 g lactose 2.9 mmol lactose " lactose molecule
On the other hand, since 1 OD - mL = 0.5 g dry mass:

v — O.5gdrymass N 1 OD - mL _ 10D N 10D ~0.34 OD

lg lactose 1 g lactose 1 g lactosc/mL ™~ 2.9 mmol lactosc/mL mM lactose

iv. Plugging all the numbers, we get:

1 _le _ 0.35 g mass 3/s _ 0.35 g mass 3/s _
B mp  1glactose 417. % ©2.9-1073 mol lactose 417 . % a
0.35-3

1791035 228407t

T 29-103-417-110
where we have computed mg from the length of the protein similarly to what was done above.

(d) The lactose transporter is one of a suite of “carbon catabolic proteins” expressed when E. coli is short of carbon supply. The
other proteins include bem—galactosidase (LacZ) which degmdes lactose into glucose and galactose (which then enter central
metabolism), and other enzymes not specific to lactose degradation. Let the proteome fraction of all these carbon catabolic
proteins be pc. Since the expression of LacY is co—regulated with these other catabolic proteins and thus have the same
growth-rate dependences, we can take the proteome fraction of LacY, ¢, to be a fixed portion o of . This leads to

r

bc = % (2)

where kc = aEkE



For cells grown in minimal medium without the supplement of amino acids, etc., another significant fraction of the proteome
is comprised of anabolic proteins, eg., enzyme for biosynthesis of amino acids. Let the total proteome fraction of these
enzymes be ¢ 4. Empirically, a linear relation between the growth rate 1 and ¢ o similar to Egs. and (2) has been

found,
r

pa = I (3)

with a coefficient k 4. It turns that numerically, kg ~ kp.

Finally, there is the constraint that sum of all proteome fractions add up to 1, ie.,

PR+ O + OA = Ppax (4)

where Gpax = 1 — ¢, with ¢ being the fraction of obligatory proteins encountered in (b).
i. Combine Egs. (I)-@) co show that the growth rate depends on the parameter k¢ as

ko

_— 5
Tck(j—i-k'RA ©)

Express the lumped parameter rc and kg in terms of kg and @yay and find their values. How would you interpret
the meaning of ¢ and how would you test this experimentally? Explain the sense by which the ratio kc:kpa is
regarded as a measure of “carbon quality”.

ii. For E. coli growing on saturating concentration of lactose, the growth rate is found to be ~ 1/h. Find the corresponding
value of kc. What is the ratio kc:kRr A for lactose? Find the proteome faction ¢ g, ¢ 4, ¢ during growth on lactose.

iii. Based on the value of kg you calculated in (c), what share of catabolic proteins is LacY? What fraction of the entire
proteome is LacY?

iv. E. coliis found to grow on saturating glycerol at rate ~ 0.7/h and on saturating galactose at rate ~ 0.35/h. What
are the corresponding carbon quality index? Based on the development above, give two distinct molecular causes by
which a substance may be of poor carbon quality.

Solution

i. By plugging Eqs. (I)-(B) inco Eq. (@) we get:

where we have used the fact that k4 ~ kg. Therefore:

2 1 -1 kckr kr ke
¢max ( + ) ¢max gbmaxi : T kp
ko 2kc + kg 2 ko+ TR

;md SO wW¢ haVCZ

5ht _ krp 5ht B
NS Nos—_1.25h1 kpqa= 2~ —95h!
=¢ > RA= 5

The parameter r¢ is the maximum possible growth rate that E. coli can sustain on any sing]c carbon source.
One way we can test this experimentally is by growing E. coli in several different carbon sources, and for



each one of them measure r, ¢ and ¢¢, so that we can estimate kg and kcﬂ The expression for 7 as a

function of k¢ can be rewritten as:

ko N 1 1 n kr 1
r=rg———— —=— 4 — - —
Ckc—i—kR T ro  2rc ko

Therefore, if we plot 1/ against 1/k¢ we should get a scraight line whose intercepe is 1/7¢:

1
po

which is also known as Lineweaver-Burke plot. Therefore, by performing a simple linear fit of the data plot-
ted this way we can get a value for r¢.

By using Eqgs. and , the ratio k‘c/k‘RA can also be rewritten in this way:

kc ke — X/éc _ o 0r

kra  kr/2  L-¥/ér éc

(notice that this expression is independent of the growth rate). Therefore, this ratio gives a measure of how
much of the proteome is allocated to catabolic proteins with respect to ribosomal proteins. In particular, if
kc/kra < 1wehave o > ¢p, ie. cells need to produce a lot of catabolic proteins to grow; therefore, we
can say that the “quality” of the carbon source is low (because it requires a great effort to import/catabolize).
On the other hand, if k¢ /kra > 1 we have o < ¢ and so very little catabolic proteins will be necessary
to import enough carbon to grow; we can therefore say that in this case the “quality” of the carbon source
is high.
ii. Solving Eq. (5) for k¢ we obtain:

rkra rkgr 1h™t.5h7!
ko = =

= = =10h~"
rec =1  kpbmsx—2r 5h7t.05-—2-1h7"

Therefore, the carbon quality index for glucose is:

ko . ko B 10h™! o
kra kr/2  5h7l/2

Finally: X
T 1h™ 1
e

"Notice that, since ko < kg, we can alternatively measure ¢ to estimate kg and use it instead of kc.
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iii.

1v.

r r 1h?t 1
T

r 1h™t 1
i P TR TR
and so o = ¢4 = 20% while oo = 10%.

From the definition given above, the share of catabolic proteins that are LacY is given by:

ke 10h7!
kg 28.4h7!

and therefore the fraction of the entire proteome occupied by LacY is:

or = apdc ~ 35% - 10% = 3.5%

(6% 5) ~ 35%

First of all, we call:

Toye = 0.7h™" re = 0.35h7"

the growth rates on glycerol and galactose, respectively. Since we know the value of kg for E. coli, we can
estimate the protein fractions occupied by ribosomes when growing on glycerol and galactose:

—1 -1
ghe _ Tehe  0.7h wl  Tgl 0.35h
G % =G T swr R
Then, since k4 =~ kg, we have:
I{? yC c a a
kra =5 =25h"" G = ¢ = 14% ¢i! = 8! = 7%
and since @y = 50%:
IVC l /C l C al le ll]
B = e — O — 05 = 22% $ = bmx — O — O = 36%
w¢e haVCZ
g Tgve  0.7Th7! _ o Twl  0.35h71 _
kES = B = ~3.2h7! A
¢ o 2% ¢ g8 36%
Therefore, thC Carbon quality il’ldCXCS Ofg]ycerol and galactose are, respectively:
kﬁ?’cw3.2h‘1wl3 L oa
kpa ~ 25h 1T kpa  25h 17

There can be two molecular causes by which a substance may be of poor carbon quality: it may be difficulc
to import into the cell and/or it could be difficult to catabolize (i.c., difficult to break down into precursors
for protein synthesis). In fact, from what we have seen in the problems above we have:

ko = agkp = ag - Yw—E
mpg
If a substance is difficult to import into the cells then the ratio wg/mp (i.e., the specific uptake rate per
molecular weight of the importer proteins) will be small; in this case, therefore, the value of k¢ will be low
and as a consequence also the quality index of the substance will be low. On the other hand, if a substance
is difficult to catabolize, its yield Y will be lo and again as a consequence k¢ will be small.



(e) To derive the Monod growth law, we consider the lactose concentration in the medium to be maintained at a constant value
[L]. Then the lactose uptake rate per LacY molecule is given by the Michaelis-Menten kinetics as

L]

L]+ Kk (©

we([L]) =wk

where wg = 3 /s is the uptake rate used above, and K is the equilibrium binding constant of lactose to LacY. Express
k¢ in terms of wg([L]) and use it in Eq. (5) to derive the Monod growth law:
[L]

r([L]) = ro——— (7)
where 1 is the growth rate under saturating concentration of lactose as given by Eq. (). Express the Monod constant for
lactose, Ky, in terms of K and the basic parameters of the growth laws in Egs. (I)-@). Find the value of the Monod
constant if K = 0.3 mM. Can you explain why the Monod constant is much smaller than the binding constant Kg?

Solution
First of all, we have:

kc

where k¢ is the value we have found before for saturating concentrations of lactose, i.e. ko = 10 h~!. Therefore:

k(L) (L . -
r([L]) =rc o CkC[L]_|_KE kC[L][-f]KE + kra

B [L] 1 . [L] _
a erCM tel ) ~reke [L](kc + kra) + kraKE
_ reko . [L]
kC + k?RA [L] + KE kc+kRA
we therefore have: L k
rokco RA
=_c Ky = Kpo——7—
" ke + kra Y ke + kna

and by substituting 7c = @makr/2 and kpa = kr/2:

kRk‘C kR
max K K —
=9 kr + 2ko M= e ¥ ke
If Kg = 0.3 mM, we have:
5h™! 1
Ky =0.3mM - = —-0.3mM = 0.06 mM = 60 uM

5ht+2.10h" ' 5
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The reason why the Monod constant K is much smaller than the binding constant Kg is that at lower con-
centrations ofilactoseﬂ the cells readjust their protecome in order to express more lac permeases. This way the

carbon influx does not decrease by the same amount of the permease import rate.

For example, if the external concentration of lactose is [L] = K = 300 puM, we will have wg([L]) = wg/2,
i.c. every lac permease on the cell membrane will be importing lactose molecules at a rate tha is half of the rate
at saturating concentrations of lactose (i.e., wg). To compensate this, cells reallocate their proteome to produce
more lac permases, and as a result the growth rate is 7 = ro[L]/([L] + Kpr) = 70 - 300 uM/(300 puM +
60 uM) ~ 0.83 - r¢. Therefore, even if the lactose permease import rate has decreased by 50%, the growth rate
has decreased by only 17%.

Solve for ¢ ([L]), the fraction of catabolic proteins at different lactose concentration [L]. Show that

po((L]) = o (1 - ([LD) ®

rc

and give the value of gi)gf'x. Eq. describes a linear decline in the abundance of catabolic proteins with increasing gi*owth
rate, referred to as the “C-line”. It is a quantitative statement of the phenomenon of “catabolite repression” ubiquitous
in microbiology, wherein the expression of catabolic enzymes 1is inhibited in medium with improved carbon availability.
Explain in your own words why should cells reduce the catabolic proteins when carbon is more available.

Solution
From Eq. M) we can write:

r(lL))

¢c([L]) = Gmax — OR([L]) — dA([L]) = Prmax — Tart

which we can write as:

d)C([L]) = ¢rgax (1 - r([L])> with ¢n(}ax = ¢max rc = ¢maxkfR

ro 2

When carbon is more available, cells should reduce the expression of catabolic proteins because they need less
permeases to import the same amount of carbon. Furthermore, if they did not reduce catabolic proteins in these
conditions, thcy would be able to import a lot of carbon and convert it into precursors for the synthcsis of amino
acids, but they would not have enough proteins to convert these precursors into amino acids and then put them
together to produce proteins.

In other words, when carbon is more available it becomes easier to import it, and the cellular processes that

limit growth in this case are no 10nger catabolism, but anabolism and protein synthesis.

Competition for nutrient

Two species described by densities p1(t) and pa(t) grow on the same nutrient source, of concentration n(t). Suppose the
growth rate of species 4 is given by the Monod growth law, 13(n) = r; o - n/(n+ K;), the death rate is given by 13, and
the nuerient influx is jo. Find a cricerion on the physiological parameters (r;.0, Ki, ;) in order for species i to survive in
the steady state.

>This is true in general for any carbon source: the cells will readjust their proteome in order to produce more permeases.
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Solution
The equations of the system are:

_— , n B N , n B h:._plﬁ_pzm
P1=p1 1’07n—|—K1 241 P2 = P2 2’07n—|—K2 2 Jo 7Y1 7Y2

Suppose species 1 survives, and species 2 goes to extinction. From the equation for pq at steady state we have:

pp=pilr 7@ —u1) =0 p’l‘:i() r 7% = =
1 1 1,0m{_’_K1 1 l’on’{—i—Kl 1

K 1 1
Lme L 1)
1 nj ny K

Where nj is the steady-state resource concentration when only species 1 is present.
Similarly, if we assume that species 2 survives and species 1 goes to extinction we have:

1 1 (7“270 1)
—=— ==
Ny Ko \ pe
here again n3 is cth ad concentrati h 1 cies 2 i
where again nj is the steady-state resource concentration when only species 2 is present.

Now, let’s consider the case where species species 1 survives and species 2 is going to extinction. In this case
when n = nj we need p2(n]) < 0 (the population of species 2 will always decrease until p5 = 0). Therefore:

* *
p2 = p2 T20L—M2 <0 = T20L<M2 =
T ni + Ko T ni + Ko

0 K
2 <1+—*2 =
H2 nq

K 1 T 1 r
702’0—1<2<T1’0—1> :>(2’O—1><<1’0—1>
2 Ky \ Ko \ p2 Ki; \ 11

This condition can be rewritten as:

1 ) 1 T 1 1
< 70—1><(70—1 :>7<7:>n>1k<n§
Ko \ p2 Ky \ 1 ny  nj
Therefore, species 1 survives if n*{ < n; By symmetry, species 2 will survive when n§ < ni‘ In general, if
we have N species in this system the only one that will survive is the species with the lowest value of n}. The

ecologica] meaning of this condition is that the species that will outcompete all the others is the one that uses the
resource most efficiently, because it is the species that leaves the lowest steady-state concentration of resource

in the environment, thus making it harder for other species to keep up with its own growth.

3. MacArthur’s model of resource competition
MacArthur’s model applied to 2-species (of densities p1, p2) and 2 nutrients (of concentrations na, npg) is

p1= (UlAnA + ’UlBTLB) - p1 — H1pP1 (9)

p2 = (vaana + vapng) - p2 — pap2 (10)

10



. na

NA = yANA - (1 - K) — (viap1 + v2ap2)na (11)
A

. np

np = YBNE - (1 — K) — (viBp1 + vapp2)nB (12)
B

where ;¢ is the consumption matrix indicating the uptake preference of species 1 for nutrient ¢, W; is the death rate of
species @, and ¢, is the generation rate, K, is the concentration scale of nutrient cv in the habitat. (The yield factor has
been omitted.)

(a) Assume the existence of a non-trivial steady state with 0, n, pj, p3 all being non-zero. From p1/p; = 0 in Egs.
and (10), show that in the limit the death rate p; — 0, the steady state concentrations ng — 0. Using this result in Egs.
and (12), show that 1o /na = 0 lead to the following equation for the steady state densities

<7)1A U2A) . (Pl) _ <’}’A>
U1B V2B P2 B

Solution

From Egs. and at steady state we have:

p = viany +vipnp S o= H1V2B — H2V1B o F1v24 — pavia
- y =
fo = voAn’y + vapng V1AV2B — V1BV24 U1BU24 — V1AV2B

Therefore, we will have n}, — 0if u; — 0.

From Egs. and at steady state we have:

ya(l = n}/Ka) = viap] + v24p3
vB(1 —n/KB) = viBp] + v2pps

and in che limit n:; — 0 chis reduces to:

YA = V14p] + V243 N <U1A 'UQA) . <PT> _ <’YA>
YB = viBp; + v2p P} V1B V2B s VB
(b) Write down the solution of the above matrix equation for p and p3. Show that the feasibility condition, i.e., p} > 0 and
p5 > 0, can be written as two conditions between the environmental parameters 7ya, Yg, and m; = v;g/v;, which

describes the nutrient preference of species 4. Plot the “ecological phase diagram” in the space (ya, YB), marking clearly
the region of coexistence, and the region of dominance/extinction.

Solution
By simply solving the linear system:

YA = v1ApT + V2405 V2BYA — V2AYB VIBYA — V1AYB
YB = V1BP] + V2B P U1AV2B — V1BV24 U1BV2A — V1AV2B

11



Therefore, we have p7 > 0 when:

V2BYA > V2A7YB V2BYA < V2A7B
or =
V1AV2B > V1BV2A V1AV2B < V1BU24
ma > YB/vA o mo < YB/7A
my < Mmy mi > my

Similarly, we have that p5 > 0 when:

mi > YB/vA o m1 < YB/YA

mi1 > Mo mp < mgy
Therefore, putting together these results, we have:

B

m; < — < mo when mi < ma
YA

MQ<7£<m1 when mi > meo
TA

Therefore, the “Ccological phasc diagram" n ('YAa ’yB) space looks like this (in the case m1 < mo):

B

mi =
1 YA

YA

(c) Fora ﬁxea' environment paramctcrized by Y =B / YA (which indicates the relative nutrient availability), plof the “physi—
ological phase diagram” in the space (1, mg) by indicating which regions of this space give coexistence, and which regions
give dominance of species 1 or 2.

Solution

By looking at the conditions found above, in the (m1, m2) space we have that p > 0 and pj = 0 when:

12
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mo o Q&
L/
1 QO -7
: ) (\\'\\\’
p1 >0 E p1 >0
. /P =0
Vhommmmm s R
pi=0 :
L pi>0
p1>0 |
o
Similarly, for p5 we have:
(((\ﬂ)
Y
ma ({(\\q, ‘((\)N
: L ,\\9»
| @\\ 7(\
: (\\N\’
p5 >0 v ps =0
: p5 >0
Sl o
p5 >0 :
p5 >0
ph=0 !
; m

Therefore, the “physiological phase diagram” in (m, m2) space looks like this:
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pi >0

coexistence

coexistence

p1 >0

(d) What is the ‘optimal’ value of my that species 1 should take on to maximize its existence (i.e., survival) if it expects species
2 to take on a random value of ma? or if it expects species 2 to take on the ‘optimal’ value of ma? If the m values of
both species are close to this ‘optimal’ value, what would be the probability that one species becomes extinct if the environ-
mental parameter 7y can take on a value within a finite range § about a mean value, 5 with equal probability? [Assume
the environment can vary rapidly while my;, determined by genetics, is frozen over the scale of environmental variation.|
What range of m; should each species i take on to maximize its existence in a fluctuating environment if it can coordinate
with the other species which is also interested in maximizing its existence? What danger is there if the other species ‘cheats’?
[Note: Your response to (d) is not expected to be quantitative.|

Solution
The “optimal” value that my should take to maximize the survival of species 1 is v in both cases.

Let’'s now consider the case mqi, ma ~ 7 and the environmental parameter can take value within a finite
range ¢ around its mean value 7. As the hint suggest, we can assume that the point (mq,m2) that describes
the species is fixed and 7 changes rapidly. In this case there are three possibilities: we either end up in one
of the two “quadrants” where coexistence is possible, or we end up in one branch of the two “half-quadrants”
where one of the species goes to extinction. Let’s consider for example species 1: the probability that species
1 goes extinct as y changes will be proportional to the angles occupied by the quadrant p§ > 0, and since
each quadrant is spanncd by an anglc of 45°, the probabi]ity ofgoing extinctis 2 - 2 - 45/360 = 1/2 (alterna-
tively, we can compute this probability as the complementary of the probability of both species coexisting, i.c.

1-2-90/360 =1 —1/2 =1/2).

A more formal way to see the same thing is the following. If we fix (m],m3) ~ (77,7) and then we let the
environmental parameter 7y vary within a range d, we can “zoom in” the physiological phase diagram:
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and the system now will be in a point (e.g., the one shown in the figure above) that can be thought of as randomly
drawn in chis square. Thcrcforc, the probability that (for cxamplc) species 1 will go extinct will be Cqual to the
ratio between the area inside that square where p7 = 0 and the total area of the square. Since pj = 0 in two
right triangles of base and beight 0, the probability of extinction is:

2-62/2 6 1

(26)2 462 4

If the species want to maximize their existence in a ﬂuctuating environment and can coordinate with each other,
they should set their m; so that the system will end up surely in one of the two “quadrants” where coexistence
is possiblc, ie.

myp <7y <mg or mo < v <mq

For example, if v € [7 — 0,7 + ¢, they should set:

my=7%5+9 my=7%—9 1B3)
mo=75—9 mo=75+9

which, rcfcrring to the “zommed in” figurc shown above, means putting the system in either of these two points:

Finally, if one of the two species “cheats” (i.c., it doesn’t coordinate with the other as discussed above) there is

the risk that either one of the two species will go extinctﬂ

. Competition for essential nutrients
The dependence of the growth of bacterial species © on two essential nutrients A and B is given by

1 1 17t
rilna,ng) = | —— + (14)
VAT A UViBNB

where Vi is the single-nutrient consumption efficiency (when the other nutrient is in saturation) and n, is the concentration
of nutrient av as in Problem #2. Unlike substitutable nutrients, the uptake of nutrient cv by species @ is given by r; - p; / Ya,

3Notice: even the species that is cheating can go extinct: a cheater can drive itself to extinction, if it doesn’t cheat in the “right” way!
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(a)

where p; is the density of species i, and Yy, is the yield of either species for nutrient cv. This leads to the following set of
consumer-resource equations
p1=r11(na,np) - p1 — pp1

p2 =r2(na,np) - p2 — pp2

) 1 2
i = p(nd — na) — Tl(nA,nB)L - Tz(nA,nB)L
Yia Yo,
. 1 2
np = p(ng —npg) — Tl(nAmB)L —ra(na, nB)L
Yip Yo

)

for a chemostat-based system where p is the dilucion rate and n%, is the inflow concentration of nutrient cv. In this problem,
you will derive the feasibility conditions for this system using Tilman’s graphical approach.

Without solving the equations algebraically, sketch the conditions for p; = 0 in the (na, ng) plane. Indicate the location
of (njﬁl, nj‘g) where both py and pa are finite. On the plot, also mark the point (n%, nOB) which is proportional to the
nutrient inflow. Next, find an algebraic expression for ny, n’; in terms of the environmental and physiological parameters.
[Hint: You can ﬁrst use the matrix inversion formula for n;l ]

Solution
From p; = 0 we have:
1 n 1 1 ViA na

ViATLA V;BN'B H UiB

CuianA
which is a hyperbola that looks like this:

np

nA

Therefore, putting together the two species we will have, for example:
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(b)

where we have also shown the point proportional to nutrient inflow.

In order to find the algebraic expression of n¥y and n7, we start from p; = 0 as above:

1 11 _ 1
via  nY + viB np W
11 1.1 _1
vaa MY vap  MNp M

If we now call M the matrix on the left and use the inversion formula, we get:

1
1 N det M
np
where: 1 1
det M = —
V1AV2B V1BV2A

Therefore, we get:

1 1 wviavea(vip —v2B)
Ny U V1BU2A — V1AV2B

and thus:
V1BU2A — V1AV2B

v14v24 (V1B — V2B)

k
np =g

1
V2B

_ 1
V24

11 L 1
V1A VIB L m
1 1 1 1
v2A V2B np H
__1 1
V1B 123
1 1
V1A 14
1 V1AV1BU2AV2B

det M V1BV24 — V1AV2B

1 1 wvipvep(vea —v14)
np [ VIBU24 — V1AV2B
« _ UILBU24 — V1AV2B

np = K-

v1BV2B (V24 — V14)

Show the balance of nutrient | fluxes at (n*,ng) graphically using a vector relation among the nutrient influx Jo and
the consumption fluxes Jy, Ja, as done in class. Describe the condition for coexistence graphically, and write down the
corresponding algebraic expression involving the constraine on n%, n%.

Solution
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We can rewrite the equations for 114 and np as follows:

hA:M(n%—nA)—rl(nA,nB);fA —rg(nA,nB)% N
np = p(ny —np) — ri(na,np) ¥y — ra(na,np) ¥
()G () (2
nB n% —npg /Y1 r2/Ya B
= =i —

Therefore, the consumption fluxes jl and jg point in directions with slopes Y1, 5/Y1 4 and Y5 g/ Y5 4, respec-
tively. If we use (na,ng) = (n*,n}g), the system looks like this:

Where we have also highlighted the directions along which jl and fg lie, i.e. the lines passing through (nz, n*B)
and with slopes Y1, 5/Y1 4 and Y5 /Y5 4. Coexistence will be possible if the slope ofj), ie. (n% —n%)/(n% —
nz), lies between the slopcs of these two lines:

0
Yop np—-np Yip

Youa n%—n% Yia
(c) Show graphically what happens if (n%, n%) lies outside of the constraint, and write down the algebraic expression for the
steady-state concentrations 1y, N’ and densities p7, p5 corresponding to the two types of outcomes that would arise.

Solution

P\eferring to the ﬁgure above, if (n%, n%) lies outside of the coexistence region we can have cither one or both
species going to extinction. In particular, if (n%, n%) lies between the blue hyperbola and the direction of Ji
species 1 will dominate, and convcrsely species 2 will outcompete species 1 if (n%, n%), flnally, if (n%, nOB) lies
below the two hyperbolas, both species will go to extinction:
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nA

Let’s assume for example that (n%,n%) lies in the area where species 1 dominates (the case for species 2 is
symmetrical). The point will follow J; and thus move along the line passing through (n%, n%) with the same

slope as Ji. At the steady state, (n%, ;) will lie on the intersection between this line and the nullcline p1 = 0:

np

(n, n)

(n4, )
na

Therefore, can find n%, n; by finding the intersection of these two curves. The nullcline p1 = 0 is:
1 1
+
v1ANA  UV1BMNB

= p

On the other hand, the line along which the system moves is:
NB=q+m-ng
wherem =Y /Y] 4 (the slope of J1) and ¢ can be found from the fact that the line passes through (n%, n%):

0 YI,B 0 0 Yl,B no

ng = ¢=ng-— A
Yia Yia

Therefore, the point (n*, n};) can be found by solving:
1 1

* + *

UlATLA lenB

=u ng=q+m-nj
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This can be done, for example, by taking the reciprocal of the equation of the line:
11
ny 1+ mny

and substituting in the equation of the nullcline:

1 1 v1B(1 +mn%) + vian’
=p = = * *
) v1Av1B1 (¢ + mn’y)

+
vian®y  vip(l+mn¥

2
= pviavipm - (ny)” + (pviavipg — vipm —via)ny —vipg =0 =

1

= n=—"
A7 2umuravip

(viBm + V14 — pqUIAVIB + \/(MqviAviB —vipm —v14)? + 4quU1AU%B)

(which is the only acceptable solution, since the other one is negative). Substituting in the equation for the
straight line we get ny = ¢ +m - n’.
Finally, from the equation for pq at steady state we get:
pi(ri(ni,np) —p) =0 = ri(nj,np)=p (15)
and therefore, from the equation for 1 4:
0 * * * pT * Y; 0 *
p(ny —ny) —ri(ni, ”B)m = p1 =Y1,a(ny —nj)

as stated above, the case where species 2 dominates is symmetrical, so:

1
Ny = - | VapM + V2a — [1qU2AV2B + \/ (Hquaavap — vapm — v24)? + 4pumquaavay
2umueAv2B
Yo 0o Y28 o
where: m= - q=ng— ——"Nn
Yo a4 Byo, A

)

and furthermore:
* 0 *
py =Y a(ny —ny)
(d) Describe and explain the difference of the behavior obtained here compared to the ones obtained in class for two substitutable
nutrients.

Solution

In the case of substitutable resources, if we inflow of either of the two resources is very large, one of the two
species will dominate (according to their prcferences). This happens because the nullclines intersect the axes
and therefore the area in the (n4,np) space where both species go to extinction is finite. Here, however, this
is not true for essential resources: since the nullclines are now hyperbolas with non-trivial asymptotes (i.e.7 the
asymptotes are not the axes, see also the representation of the system in point (a)) the area where extinction
is possible extends to infinity. This means that even if we put a very large amount of one resource, let’s say
resource A for example7 it is not guarzmteed that species 2 will dominate (if we refer to the phase diagrams
plotted above). In fact, since both resources are essential species 2 also needs a minimum supply of resource 1
to grow. If chis supply is not providcd, species 2 will not be able to dominate the system even though resource
A is very abundant.
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