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1. Proteome allocation and the Monod growth law
In class we went over key elements of the proteome allocation analysis for bacterial growth. In this problem, you will work
them out step-by-step using a concrete example, for the growth of E. coli on lactose as the sole carbon source. From a few
assumptions, we will obtain quantitatively the growth rate and the expression of the lac operon for di�erent concentrations
of lactose, i.e. , Monod’s growth law and the phenomenon of catabolite repression.

In the following, all quantities correspond to amount contained in 1-mL of exponentially growing culture at optical density
(OD) = 1, referred to as “OD· mL” for short. 1 OD· mL of culture corresponds to 108 ∼ 109 bacterial cells depending
on the specific culturing condition. We will refrain from using per cell quantity because the amount per cell can vary 10x
due to change of cell size in di�erent growth conditions (including for cells grown in di�erent lactose concentrations to be
studied here). Instead, amount per OD· mL is more invariant. In particular, 1 OD· mL of culture contains a total dry mass
of ∼ 0.5 mg and total cytoplasmic water content of ∼ 1 mg (or 1 µL in volume) for most conditions characterized. The
total protein content in OD· mL varies moderately, from 0.3 mg at fast growth to 0.4 mg at slow growth. For simplicity,
we will take total protein per OD· mL to be 0.35 mg.

Definition of symbols to be used below: NX and MX are, respectively, the number and mass of protein X per OD· mL
culture. M = 0.35 mg is the total mass of cellular proteins per OD· mL of culture. mX is the molecular weight of protein
X . φX ≡MX/M is the mass fraction of proteinX among all cellular proteins; it is referred to as the “proteome fraction”,
a measure of “protein abundance”.

(a) Conversion between proteome fraction and concentration: The average intracellular concentration of a proteinX , denoted
as [X], can be taken as the number of proteins in OD· mL, NX , divided by the total cytoplasmic water volume in OD·
mL, V . Derive a relation between the concentration [X] and the proteome fraction φX in terms of the molecular weight
mX . For typical proteins 300 aa in length, find its concentration in µM if the proteome fraction is 1‰ (part per thousand).
You can take the average mass of an amino acid to be 110 Daltons.

[Note: Below we will only refer to protein concentrations as proteome fractions. It turns out that the latter is more readily
obtained experimentally, e.g., by proteomics or by ribosome-profiling. It is also a natural quantity to work with in models.
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The above exercise is meant to let you know that you can always convert proteome fraction to a more familiar concentration
unit, e.g., µM.]
Solution
From the definition of [X] we have:

[X] =
NX

V

Furthermore, since mX is the molecular weight of protein X we also have:

NX =
MX

mX

Therefore:
[X] =

1

V
· MX

mx

If we now multiply and divide by M :

[X] =
1

V
·M · 1

M
· MX

mX
=
MX

M
· 1

mX
· M
V

=
φX
mX
· M
V

=
φX
mX
· 0.35mg

µL
⇒

⇒ [X] =
φX
mX
· 0.35mg

µL

Now, since the average mass of an amino acid is 110 Da, we have that 1 mole of amino acids will weight 110
grams, and so the molecular weight mX of protein X will be:

mX = LX
110 g
1 mol

= LX
0.11 mg
1 µmol

where LX is the length of the protein (in number of amino acids). Therefore:

[X] =
φX
LX
· 1 µmol
0.11 mg

· 0.35 mg
1 µL

≈ φX
LX
· 1 µmol

1 µL
· 3 =

φX
LX
· 3 M =

φX
LX
· 3000 mM

If we now use φX = 1‰ = 10−3 and LX = 300:

[X] ≈ 10−3

300
· 3000 mM = 10−2 mM = 10 µM

(b) Protein synthesis flux by ribosomes: Let JR denote the flux of protein synthesis, in unit of # aa polymerized per OD· mL
of culture. For a culture growing exponentially at the specific rate r, this is just r ·M (with the total protein mass M
expressed in # aa/(OD· mL)). Molecularly, protein synthesis flux can be written as the product of the ribosome elongation
rate (denoted as ε) andNR, the total number of ribosomes per OD·mL of culture. [Here we have assumed that all ribosomes
are engaged in translation at the same speed. This turns out to be a reasonably good approximation, breaking down only at
very slow growth.]

i. Show that the above leads to the growth law
φR =

r

kR
(1)

where φR ≡MR/M is the proteome fraction of ribosomal proteins, MR being the total mass of r-proteins per OD·
mL of culture. Express kR in terms of ε and mR , the weight of all r-proteins in a ribosome.
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ii. Adding up all r-proteins in the ribosome of E. coli gives 7336 aa. However, for the ribosomes to do its job, many
helper proteins such as elongation factors are also needed. These proteins add up to another 60% in mass. Thus, we
can take the “molecular weight” of an e�ective ribosome as mR = 1.6 × 7336 aa. Further using the measured
elongation rate of ε = 16 aa/s, find the value of kR in unit of h−1.

iii. What is the theoretical maximum growth rate if a cell contains only ribosomes? What is the corresponding doubling
time? [Note the factor of ln 2 in the conversion.] The fastest doubling time observed for E. coli is ∼ 17 min, when
the culture contains many nutrient ingredients including all amino acids and nucleotides. What is the corresponding
ribosomal fraction φR at this fastest growth rate? The remaining fraction of the proteome (φQ) found at the fastest
growth rate, are comprised of obligatory proteins needed for house-keeping functions. Empirically, φQ is found to be
approximately growth-rate independent even though φR changes according to Eq. (1).

Solution

i. From its definition, we have:

JR = rM JR = εNR = ε
MR

mR

Therefore:
r =

ε

mR
· MR

M
⇒ φR =

r

kR
where kR =

ε

mR

ii. We have:

kR =
ε

mR
=

16 aa/s
1.6× 7336 aa

≈ 1.4 · 10−3 s−1 = 1.4 · 10−3 · 3600 h−1 ≈ 5 h−1

iii. If a cell only contains ribosomes we have φR = 1, so that rmax = kR = 5 h−1. The corresponding doubling
time is τmax = ln 2/rmax ≈ 0.14 h ≈ 8 min.
The fastest observed growth rate is rfastest = ln 2/17 min ≈ 2.45 h−1, and its corresponding ribosomal
fraction is φR = 2.45 h−1/5 h−1 ≈ 0.5 = 50%. Therefore, φQ = 50%.

(c) Carbon uptake flux: Consider growth of E. coli in minimal medium with a single carbon source, without the supplement
of amino acid and other substances. Let JC denote the flux of carbon uptake, in unit of # substrate molecule taken up per
time per OD·mL. Molecularly, this can be written as the product of ωE , the specific rate of the uptake enzymeE, andNE ,
the number of uptake enzymes per OD· mL of culture.

i. Express JC in term of the proteome fraction of the uptake enzyme, φE =ME/M , and the molecular weight of the
uptake enzyme, mE .

ii. The condition of flux balance can be stated as JR = Y ·JC , where the yield Y represents the conversion factor from
the substrate molecule to aa. Using flux balance and the expression you obtained above for JR and JC , derive the
relation φE = r/kE and find an expression for the parameter kE in terms of the molecular parameters (ωE ,mE)
and the yield Y .

iii. Consider the case where lactose is the sole carbon substrate. 1 g of lactose is known to produce 0.5 g of dry mass.
Based on the protein:dry mass ratio given above, work out the value of Y for lactose. Express it in unit of # aa/lactose
molecule and in OD/mM lactose.

iv. Given that the specific uptake rate for the lactose transporter (LacY, the lac permease, 417aa in length) is ωE = 3/s
in saturating lactose concentration, write down the value of kE for lactose uptake in unit of h−1.

Solution
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i. We have:
JC = ωENE = ωE

ME

mE
· M
M

=
ωE
mE

φEM

ii. By using JR = rM and the expression of JC found above, we have:

r��M = Y
ωE
mE

φE��M ⇒ φE =
r

kE
where kE = Y

ωE
mE

iii. By definition:

Y =
0.5 g dry mass
1 g lactose

With the data provided at the beginning, the protein:dry mass ratio is 0.35/0.5 = 0.7. Therefore:

Y =
0.5 · 0.7 g protein mass

1 g lactose
=

0.35 g protein mass
1 g lactose

Since the mass of an amino acid is 110 Da, we have that 1 mol aa = 110 g; therefore, 0.35 g of protein
mass are equal to (0.35/110) mol ≈ 3.2 mmol of amino acids. On the other hand, the molecular weight
of lactose is 342.3 g, and so 1 g of lactose is equal to 2.9 mmol of lactose. Therefore:

Y =
0.35 g protein mass

1 g lactose
≈ 3.2 mmol aa

2.9 mmol lactose
≈ 1.1

aa
lactose molecule

On the other hand, since 1 OD ·mL = 0.5 g dry mass:

Y =
0.5 g dry mass
1 g lactose

≈ 1 OD ·mL
1 g lactose

=
1 OD

1 g lactose/mL
≈ 1 OD

2.9 mmol lactose/mL
≈ 0.34

OD
mM lactose

iv. Plugging all the numbers, we get:

kE = Y
ωE
mE

=
0.35 g mass
1 g lactose

· 3/s

417 · 110 g mass
1 mol lactose

=
0.35 g mass

2.9 · 10−3 mol lactose
· 3/s

417 · 110 g mass
1 mol lactose

=

=
0.35 · 3

2.9 · 10−3 · 417 · 110
s−1 ≈ 7.9 · 10−3 s−1 ≈ 28.4 h−1

where we have computed mE from the length of the protein similarly to what was done above.

(d) The lactose transporter is one of a suite of “carbon catabolic proteins” expressed when E. coli is short of carbon supply. The
other proteins include beta-galactosidase (LacZ) which degrades lactose into glucose and galactose (which then enter central
metabolism), and other enzymes not specific to lactose degradation. Let the proteome fraction of all these carbon catabolic
proteins be φC . Since the expression of LacY is co-regulated with these other catabolic proteins and thus have the same
growth-rate dependences, we can take the proteome fraction of LacY, φE , to be a fixed portion αE of φC . This leads to

φC =
r

kC
(2)

where kC = αEkE
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For cells grown in minimal medium without the supplement of amino acids, etc., another significant fraction of the proteome
is comprised of anabolic proteins, e.g., enzyme for biosynthesis of amino acids. Let the total proteome fraction of these
enzymes be φA. Empirically, a linear relation between the growth rate r and φA similar to Eqs. (1) and (2) has been
found,

φA =
r

kA
(3)

with a coe�cient kA. It turns that numerically, kA ≈ kR.

Finally, there is the constraint that sum of all proteome fractions add up to 1, i.e.,

φR + φC + φA = φmax (4)

where φmax ≡ 1− φQ, with φQ being the fraction of obligatory proteins encountered in (b).

i. Combine Eqs. (1)-(4) to show that the growth rate depends on the parameter kC as

r = rC
kC

kC + kRA
(5)

Express the lumped parameter rC and kRA in terms of kR and φmax and find their values. How would you interpret
the meaning of rC and how would you test this experimentally? Explain the sense by which the ratio kC :kRA is
regarded as a measure of “carbon quality”.

ii. For E. coli growing on saturating concentration of lactose, the growth rate is found to be∼ 1/h . Find the corresponding
value of kC . What is the ratio kC :kRA for lactose? Find the proteome faction φR, φA, φC during growth on lactose.

iii. Based on the value of kE you calculated in (c), what share of catabolic proteins is LacY? What fraction of the entire
proteome is LacY?

iv. E. coli is found to grow on saturating glycerol at rate∼ 0.7/h and on saturating galactose at rate∼ 0.35/h . What
are the corresponding carbon quality index? Based on the development above, give two distinct molecular causes by
which a substance may be of poor carbon quality.

Solution

i. By plugging Eqs. (1)-(3) into Eq. (4) we get:

φmax =
r

kR
+

r

kC
+

r

kA
≈ r

kR
+

r

kC
+

r

kR

where we have used the fact that kA ≈ kR. Therefore:

r = φmax

(
2

kR
+

1

kC

)−1

= φmax
kCkR

2kC + kR
= φmax

kR
2
· kC

kC + kR
2

and so we have:

rC = φmax
kR
2
≈ 0.5

5 h−1

2
= 1.25 h−1 kRA =

kR
2
≈ 5 h−1

2
= 2.5 h−1

The parameter rC is the maximum possible growth rate that E. coli can sustain on any single carbon source.
One way we can test this experimentally is by growing E. coli in several di�erent carbon sources, and for
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each one of them measure r, φR and φC , so that we can estimate kR and kC 1. The expression for r as a
function of kC can be rewritten as:

r = rC
kC

kC + kR
⇒ 1

r
=

1

rC
+

kR
2rC
· 1

kC

Therefore, if we plot 1/r against 1/kC we should get a straight line whose intercept is 1/rC :

1
kC

1
r

1
rC

which is also known as Lineweaver-Burke plot. Therefore, by performing a simple linear fit of the data plot-
ted this way we can get a value for rC .

By using Eqs. (1) and (2), the ratio kC/kRA can also be rewritten in this way:

kC
kRA

=
kC
kR/2

= �Ar/φC
1
2 · �Ar/φR

= 2
φR
φC

(notice that this expression is independent of the growth rate). Therefore, this ratio gives a measure of how
much of the proteome is allocated to catabolic proteins with respect to ribosomal proteins. In particular, if
kC/kRA � 1we have φC � φR, i.e. cells need to produce a lot of catabolic proteins to grow; therefore, we
can say that the “quality” of the carbon source is low (because it requires a great e�ort to import/catabolize).
On the other hand, if kC/kRA � 1we haveφC � φR and so very little catabolic proteins will be necessary
to import enough carbon to grow; we can therefore say that in this case the “quality” of the carbon source
is high.

ii. Solving Eq. (5) for kC we obtain:

kC =
rkRA
rC − r

=
rkR

kRφmax − 2r
=

1 h−1 · 5 h−1

5 h−1 · 0.5− 2 · 1 h−1 = 10 h−1

Therefore, the carbon quality index for glucose is:

kC
kRA

=
kC
kR/2

=
10 h−1

5 h−1/2
= 4

Finally:

φR =
r

kR
=

1 h−1

5 h−1 =
1

5
= 20%

1Notice that, since kC ∝ kE , we can alternatively measure φE to estimate kE and use it instead of kC .
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φA =
r

kA
=

r

kR
=

1 h−1

5 h−1 =
1

5
= 20%

φC =
r

kC
=

1 h−1

10 h−1 =
1

10
= 10%

and so φR = φA = 20% while φC = 10%.
iii. From the definition given above, the share of catabolic proteins that are LacY is given by:

αE =
kC
kE

=
10 h−1

28.4 h−1 ≈ 35%

and therefore the fraction of the entire proteome occupied by LacY is:

φE = αEφC ≈ 35% · 10% = 3.5%

iv. First of all, we call:
rglyc = 0.7 h−1 rgal = 0.35 h−1

the growth rates on glycerol and galactose, respectively. Since we know the value of kR for E. coli, we can
estimate the protein fractions occupied by ribosomes when growing on glycerol and galactose:

φ
glyc
R =

rglyc

kR
=

0.7 h−1

5 h−1 ≈ 14% φ
gal
R =

rgal

kR
=

0.35 h−1

5 h−1 ≈ 7%

Then, since kA ≈ kR, we have:

kRA =
kR
2

= 2.5 h−1 φ
glyc
A = φ

glyc
R = 14% φ

gal
A = φ

gal
R = 7%

and since φmax = 50%:

φ
glyc
C = φmax − φ

glyc
R − φglyc

A = 22% φ
gal
C = φmax − φ

gal
R − φ

gal
A = 36%

we have:

k
glyc
C =

rglyc

φ
glyc
C

=
0.7 h−1

22%
≈ 3.2 h−1 k

gal
C =

rgal

φ
gal
C

=
0.35 h−1

36%
≈ 1 h−1

Therefore, the carbon quality indexes of glycerol and galactose are, respectively:

k
glyc
C

kRA
≈ 3.2 h−1

2.5 h−1 ≈ 1.3
k

gal
C

kRA
≈ 1 h−1

2.5 h−1 ≈ 0.4

There can be two molecular causes by which a substance may be of poor carbon quality: it may be di�cult
to import into the cell and/or it could be di�cult to catabolize (i.e., di�cult to break down into precursors
for protein synthesis). In fact, from what we have seen in the problems above we have:

kC = αEkE = αE · Y
ωE
mE

If a substance is di�cult to import into the cells then the ratio ωE/mE (i.e., the specific uptake rate per
molecular weight of the importer proteins) will be small; in this case, therefore, the value of kC will be low
and as a consequence also the quality index of the substance will be low. On the other hand, if a substance
is di�cult to catabolize, its yield Y will be lo and again as a consequence kC will be small.
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(e) To derive the Monod growth law, we consider the lactose concentration in the medium to be maintained at a constant value
[L]. Then the lactose uptake rate per LacY molecule is given by the Michaelis-Menten kinetics as

ωE([L]) = ωE
[L]

[L] +KE
(6)

where ωE = 3/s is the uptake rate used above, and KE is the equilibrium binding constant of lactose to LacY. Express
kC in terms of ωE([L]) and use it in Eq. (5) to derive the Monod growth law:

r([L]) = r0
[L]

[L] +KM
(7)

where r0 is the growth rate under saturating concentration of lactose as given by Eq. (5). Express the Monod constant for
lactose, KM , in terms of KE and the basic parameters of the growth laws in Eqs. (1)-(4). Find the value of the Monod
constant if KE = 0.3 mM. Can you explain why the Monod constant is much smaller than the binding constant KE?

Solution
First of all, we have:

kC([L]) = αEkE([L]) = αE
Y

mE
ωE([L]) =

αEY ωE
mE︸ ︷︷ ︸
kC

[L]

[L] +KE

where kC is the value we have found before for saturating concentrations of lactose, i.e. kC = 10 h−1. Therefore:

r([L]) = rC
kC([L])

kC([L]) + kRA
= rCkC

[L]

[L] +KE
· 1

kC
[L]

[L]+KE
+ kRA

=

= rCkC
[L]

��
���[L] +KE

· 1
kC [L]+kRA([L]+KE)

���
�[L]+KE

= rCkC
[L]

[L](kC + kRA) + kRAKE
=

=
rCkC

kC + kRA
· [L]

[L] +KE
kRA

kC+kRA

we therefore have:
r0 =

rCkC
kC + kRA

KM = KE
kRA

kC + kRA

and by substituting rC = φmaxkR/2 and kRA = kR/2:

r0 = φmax
kRkC

kR + 2kC
KM = KE

kR
kR + 2kC

If KE = 0.3 mM, we have:

KM = 0.3 mM · 5 h−1

5 h−1 + 2 · 10 h−1 =
1

5
· 0.3 mM = 0.06 mM = 60 µM
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The reason why the Monod constant KM is much smaller than the binding constant KE is that at lower con-
centrations of lactose2 the cells readjust their proteome in order to express more lac permeases. This way the
carbon influx does not decrease by the same amount of the permease import rate.

For example, if the external concentration of lactose is [L] = KE = 300 µM, we will have ωE([L]) = ωE/2,
i.e. every lac permease on the cell membrane will be importing lactose molecules at a rate that is half of the rate
at saturating concentrations of lactose (i.e., ωE). To compensate this, cells reallocate their proteome to produce
more lac permases, and as a result the growth rate is r = r0[L]/([L] + KM ) = r0 · 300 µM/(300 µM +
60 µM) ≈ 0.83 · r0. Therefore, even if the lactose permease import rate has decreased by 50%, the growth rate
has decreased by only 17%.

(f) Solve for φC([L]), the fraction of catabolic proteins at di�erent lactose concentration [L]. Show that

φC([L]) = φmax
C

(
1− r([L])

rC

)
(8)

and give the value of φmax
C . Eq. (8) describes a linear decline in the abundance of catabolic proteins with increasing growth

rate, referred to as the “C-line”. It is a quantitative statement of the phenomenon of “catabolite repression” ubiquitous
in microbiology, wherein the expression of catabolic enzymes is inhibited in medium with improved carbon availability.
Explain in your own words why should cells reduce the catabolic proteins when carbon is more available.

Solution
From Eq. (4) we can write:

φC([L]) = φmax − φR([L])− φA([L]) = φmax −
r([L])

kR/2

which we can write as:

φC([L]) = φmax
C

(
1− r([L])

rC

)
with φmax

C = φmax rC = φmax
kR
2

When carbon is more available, cells should reduce the expression of catabolic proteins because they need less
permeases to import the same amount of carbon. Furthermore, if they did not reduce catabolic proteins in these
conditions, they would be able to import a lot of carbon and convert it into precursors for the synthesis of amino
acids, but they would not have enough proteins to convert these precursors into amino acids and then put them
together to produce proteins.
In other words, when carbon is more available it becomes easier to import it, and the cellular processes that
limit growth in this case are no longer catabolism, but anabolism and protein synthesis.

2. Competition for nutrient
Two species described by densities ρ1(t) and ρ2(t) grow on the same nutrient source, of concentration n(t). Suppose the
growth rate of species i is given by the Monod growth law, ri(n) = ri,0 ·n/(n+Ki), the death rate is given by µi, and
the nutrient influx is j0. Find a criterion on the physiological parameters (ri,0,Ki, µi) in order for species i to survive in
the steady state.

2This is true in general for any carbon source: the cells will readjust their proteome in order to produce more permeases.
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Solution
The equations of the system are:

ρ̇1 = ρ1

(
r1,0

n

n+K1
− µ1

)
ρ̇2 = ρ2

(
r2,0

n

n+K2
− µ2

)
ṅ = j0 −

ρ1r1
Y1
− ρ2r2

Y2

Suppose species 1 survives, and species 2 goes to extinction. From the equation for ρ1 at steady state we have:

ρ̇1 = ρ∗1

(
r1,0

n∗1
n∗1 +K1

− µ1
)

= 0
ρ∗1>0
⇒ r1,0

n∗1
n∗1 +K1

= µ1 ⇒

⇒ r1,0
µ1

= 1 +
K1

n∗1
⇒ 1

n∗1
=

1

K1

(
r1,0
µ1
− 1

)
Where n∗1 is the steady-state resource concentration when only species 1 is present.
Similarly, if we assume that species 2 survives and species 1 goes to extinction we have:

1

n∗2
=

1

K2

(
r2,0
µ2
− 1

)
where again n∗2 is the steady-state resource concentration when only species 2 is present.

Now, let’s consider the case where species species 1 survives and species 2 is going to extinction. In this case
when n = n∗1 we need ρ̇2(n∗1) < 0 (the population of species 2 will always decrease until ρ∗2 = 0). Therefore:

ρ̇2 = ρ2

(
r2,0

n∗1
n∗1 +K2

− µ2
)
< 0 ⇒ r2,0

n∗1
n∗1 +K2

< µ2 ⇒
r2, 0

µ2
< 1 +

K2

n∗1
⇒

⇒ r2,0
µ2
− 1 <

K2

K1

(
r1,0
µ1
− 1

)
⇒

1

K2

(
r2,0

µ2
− 1

)
<

1

K1

(
r1,0

µ1
− 1

)
This condition can be rewritten as:

1

K2

(
r2,0
µ2
− 1

)
<

1

K1

(
r1,0
µ1
− 1

)
⇒ 1

n∗2
<

1

n∗1
⇒ n∗1 < n∗2

Therefore, species 1 survives if n∗1 < n∗2. By symmetry, species 2 will survive when n∗2 < n∗1. In general, if
we have N species in this system the only one that will survive is the species with the lowest value of n∗i . The
ecological meaning of this condition is that the species that will outcompete all the others is the one that uses the
resource most e�ciently, because it is the species that leaves the lowest steady-state concentration of resource
in the environment, thus making it harder for other species to keep up with its own growth.

3. MacArthur’s model of resource competition
MacArthur’s model applied to 2-species (of densities ρ1, ρ2) and 2 nutrients (of concentrations nA, nB) is

ρ̇1 = (v1AnA + v1BnB) · ρ1 − µ1ρ1 (9)

ρ̇2 = (v2AnA + v2BnB) · ρ2 − µ2ρ2 (10)
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ṅA = γAnA ·
(
1− nA

KA

)
− (v1Aρ1 + v2Aρ2)nA (11)

ṅB = γBnB ·
(
1− nB

KB

)
− (v1Bρ1 + v2Bρ2)nB (12)

where viα is the consumption matrix indicating the uptake preference of species i for nutrient α, µi is the death rate of
species i, and γα is the generation rate, Kα is the concentration scale of nutrient α in the habitat. (The yield factor has
been omitted.)

(a) Assume the existence of a non-trivial steady state with n∗A, n∗B , ρ∗1, ρ∗2 all being non-zero. From ρ̇1/ρi = 0 in Eqs. (9)
and (10), show that in the limit the death rate µi → 0, the steady state concentrations nα → 0. Using this result in Eqs.
(11) and (12), show that ṅα/nα = 0 lead to the following equation for the steady state densities(

v1A v2A
v1B v2B

)
·
(
ρ1
ρ2

)
=

(
γA
γB

)

Solution
From Eqs. (9) and (10) at steady state we have:{

µ1 = v1An
∗
A + v1Bn

∗
B

µ2 = v2An
∗
A + v2Bn

∗
B

⇒ n∗A =
µ1v2B − µ2v1B
v1Av2B − v1Bv2A

n∗B =
µ1v2A − µ2v1A
v1Bv2A − v1Av2B

Therefore, we will have n∗α → 0 if µi → 0.

From Eqs. (11) and (12) at steady state we have:{
γA(1− n∗A/KA) = v1Aρ

∗
1 + v2Aρ

∗
2

γB(1− n∗B/KB) = v1Bρ
∗
1 + v2Bρ

∗
2

and in the limit n∗α → 0 this reduces to:{
γA = v1Aρ

∗
1 + v2Aρ

∗
2

γB = v1Bρ
∗
1 + v2Bρ

∗
2

⇒
(
v1A v2A
v1B v2B

)
·
(
ρ∗1
ρ∗2

)
=

(
γA
γB

)

(b) Write down the solution of the above matrix equation for ρ∗1 and ρ∗2. Show that the feasibility condition, i.e., ρ∗1 > 0 and
ρ∗2 > 0, can be written as two conditions between the environmental parameters γA, γB , and mi ≡ viB/viA, which
describes the nutrient preference of species i. Plot the “ecological phase diagram” in the space (γA, γB), marking clearly
the region of coexistence, and the region of dominance/extinction.

Solution
By simply solving the linear system:{

γA = v1Aρ
∗
1 + v2Aρ

∗
2

γB = v1Bρ
∗
1 + v2Bρ

∗
2

⇒ ρ∗1 =
v2BγA − v2AγB
v1Av2B − v1Bv2A

ρ∗2 =
v1BγA − v1AγB
v1Bv2A − v1Av2B

11



Therefore, we have ρ∗1 > 0 when:{
v2BγA > v2AγB

v1Av2B > v1Bv2A
or

{
v2BγA < v2AγB

v1Av2B < v1Bv2A
⇒

⇒

{
m2 > γB/γA

m1 < m2

or

{
m2 < γB/γA

m1 > m2

Similarly, we have that ρ∗2 > 0 when:{
m1 > γB/γA

m1 > m2

or

{
m1 < γB/γA

m1 < m2

Therefore, putting together these results, we have:

m1 <
γB
γA

< m2 when m1 < m2

m2 <
γB
γA

< m1 when m1 > m2

Therefore, the “ecological phase diagram” in (γA, γB) space looks like this (in the case m1 < m2):

m2 =
γB
γA

m1 =
γB
γA

co
exi

ste
nce

ρ∗1 = 0

ρ∗2 = 0

γA

γB

(c) For a fixed environment parameterized by γ ≡ γB/γA (which indicates the relative nutrient availability), plot the “physi-
ological phase diagram” in the space (m1,m2) by indicating which regions of this space give coexistence, and which regions
give dominance of species 1 or 2.

Solution
By looking at the conditions found above, in the (m1,m2) space we have that ρ∗1 > 0 and ρ∗1 = 0 when:

12



m1

m2 m
1
=
m
2

m
1
<
m
2

m
1
>
m
2

γ

γ

ρ∗1 > 0 ρ∗1 > 0

ρ∗1 = 0

ρ∗1 > 0

ρ∗1 > 0

ρ∗1 = 0

Similarly, for ρ∗2 we have:

m1

m2 m
1
=
m
2

m
1
<
m
2

m
1
>
m
2

γ

γ

ρ∗2 > 0 ρ∗2 = 0

ρ∗2 > 0

ρ∗2 = 0

ρ∗2 > 0

ρ∗2 > 0

Therefore, the “physiological phase diagram” in (m1,m2) space looks like this:

13



m1

m2

γ

γ

coexistence
ρ∗1 > 0

ρ∗2 > 0

ρ∗1 > 0
coexistence

ρ∗2 > 0

(d) What is the ‘optimal’ value of m1 that species 1 should take on to maximize its existence (i.e., survival) if it expects species
2 to take on a random value of m2? or if it expects species 2 to take on the ‘optimal’ value of m2? If the m values of
both species are close to this ‘optimal’ value, what would be the probability that one species becomes extinct if the environ-
mental parameter γ can take on a value within a finite range δ about a mean value, γ with equal probability? [Assume
the environment can vary rapidly while mi, determined by genetics, is frozen over the scale of environmental variation.]
What range of mi should each species i take on to maximize its existence in a fluctuating environment if it can coordinate
with the other species which is also interested in maximizing its existence? What danger is there if the other species ‘cheats’?
[Note: Your response to (d) is not expected to be quantitative.]

Solution
The “optimal” value that m1 should take to maximize the survival of species 1 is γ in both cases.

Let’s now consider the case m1, m2 ≈ γ and the environmental parameter can take value within a finite
range δ around its mean value γ. As the hint suggest, we can assume that the point (m1,m2) that describes
the species is fixed and γ changes rapidly. In this case there are three possibilities: we either end up in one
of the two “quadrants” where coexistence is possible, or we end up in one branch of the two “half-quadrants”
where one of the species goes to extinction. Let’s consider for example species 1: the probability that species
1 goes extinct as γ changes will be proportional to the angles occupied by the quadrant ρ∗2 > 0, and since
each quadrant is spanned by an angle of 45◦, the probability of going extinct is 2 · 2 · 45/360 = 1/2 (alterna-
tively, we can compute this probability as the complementary of the probability of both species coexisting, i.e.
1− 2 · 90/360 = 1− 1/2 = 1/2).

A more formal way to see the same thing is the following. If we fix (m∗
1,m

∗
2) ≈ (γ, γ) and then we let the

environmental parameter γ vary within a range δ, we can “zoom in” the physiological phase diagram:

14



δ

δ

and the system now will be in a point (e.g., the one shown in the figure above) that can be thought of as randomly
drawn in this square. Therefore, the probability that (for example) species 1 will go extinct will be equal to the
ratio between the area inside that square where ρ∗1 = 0 and the total area of the square. Since ρ∗1 = 0 in two
right triangles of base and height δ, the probability of extinction is:

2 · δ2/2
(2δ)2

=
δ2

4δ2
=

1

4

If the species want to maximize their existence in a fluctuating environment and can coordinate with each other,
they should set their mi so that the system will end up surely in one of the two “quadrants” where coexistence
is possible, i.e.:

m1 < γ < m2 or m2 < γ < m1

For example, if γ ∈ [γ − δ, γ + δ], they should set:{
m1 = γ + δ

m2 = γ − δ
or

{
m1 = γ − δ
m2 = γ + δ

(13)

which, referring to the “zommed in” figure shown above, means putting the system in either of these two points:

Finally, if one of the two species “cheats” (i.e., it doesn’t coordinate with the other as discussed above) there is
the risk that either one of the two species will go extinct3.

4. Competition for essential nutrients
The dependence of the growth of bacterial species i on two essential nutrients A and B is given by

ri(nA, nB) =

[
1

viAnA
+

1

viBnB

]−1

(14)

where viα is the single-nutrient consumption e�ciency (when the other nutrient is in saturation) andnα is the concentration
of nutrientα as in Problem #2. Unlike substitutable nutrients, the uptake of nutrientα by species i is given by ri ·ρi/Yα,

3Notice: even the species that is cheating can go extinct: a cheater can drive itself to extinction, if it doesn’t cheat in the “right” way!
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where ρi is the density of species i, and Yα is the yield of either species for nutrient α. This leads to the following set of
consumer-resource equations

ρ̇1 = r1(nA, nB) · ρ1 − µρ1
ρ̇2 = r2(nA, nB) · ρ2 − µρ2

ṅA = µ(n0A − nA)− r1(nA, nB)
ρ1
Y1,A

− r2(nA, nB)
ρ2
Y2,A

ṅB = µ(n0B − nB)− r1(nA, nB)
ρ1
Y1,B

− r2(nA, nB)
ρ2
Y2,B

for a chemostat-based system where µ is the dilution rate and n0α is the inflow concentration of nutrient α. In this problem,
you will derive the feasibility conditions for this system using Tilman’s graphical approach.

(a) Without solving the equations algebraically, sketch the conditions for ρ̇i = 0 in the (nA, nB) plane. Indicate the location
of (n∗A, n

∗
B) where both ρ1 and ρ2 are finite. On the plot, also mark the point (n0A, n

0
B) which is proportional to the

nutrient inflow. Next, find an algebraic expression for n∗A, n∗B in terms of the environmental and physiological parameters.
[Hint: You can first use the matrix inversion formula for n−1

α .]

Solution
From ρ̇i = 0 we have:

1

viAnA
+

1

viBnB
=

1

µ
⇒ nB =

viA
viB
· nA
viA·nA
µ − 1

which is a hyperbola that looks like this:

nA

nB

µ
viA

µ
viB

Therefore, putting together the two species we will have, for example:
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nA

nB

µ
v1A

µ
v2A

µ
v1B
µ
v2B

(n∗A, n
∗
B)

(n0A, n
0
B)

where we have also shown the point proportional to nutrient inflow.

In order to find the algebraic expression of n∗A and n∗B , we start from ρ̇i = 0 as above:

{
1
v1A
· 1
n∗
A
+ 1

v1B
· 1
n∗
B
= 1

µ
1
v2A
· 1
n∗
A
+ 1

v2B
· 1
n∗
B
= 1

µ

⇒

 1
v1A

1
v1B

1
v2A

1
v2B




1
n∗
A

1
n∗
B

 =

 1
µ

1
µ


If we now call M the matrix on the left and use the inversion formula, we get:

1
n∗
A

1
n∗
B

 =
1

detM

 1
v2B

− 1
v1B

− 1
v2A

1
v1A

 1
µ

1
µ


where:

detM =
1

v1Av2B
− 1

v1Bv2A
⇒ 1

detM
=

v1Av1Bv2Av2B
v1Bv2A − v1Av2B

Therefore, we get:

1

n∗A
=

1

µ
· v1Av2A(v1B − v2B)
v1Bv2A − v1Av2B

1

n∗B
=

1

µ
· v1Bv2B(v2A − v1A)
v1Bv2A − v1Av2B

and thus:
n∗A = µ · v1Bv2A − v1Av2B

v1Av2A(v1B − v2B)
n∗B = µ · v1Bv2A − v1Av2B

v1Bv2B(v2A − v1A)

(b) Show the balance of nutrient fluxes at (n∗A, n
∗
B) graphically using a vector relation among the nutrient influx ~J0 and

the consumption fluxes ~J1, ~J2, as done in class. Describe the condition for coexistence graphically, and write down the
corresponding algebraic expression involving the constraint on n0A, n0B .

Solution
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We can rewrite the equations for ṅA and ṅB as follows:{
ṅA = µ(n0A − nA)− r1(nA, nB)

ρ1
Y1,A
− r2(nA, nB) ρ2

Y2,A

ṅB = µ(n0B − nB)− r1(nA, nB)
ρ1
Y1,B
− r2(nA, nB) ρ2

Y2,B

⇒

⇒
(
ṅA
ṅB

)
= µ

(
n0A − nA
n0B − nB

)
︸ ︷︷ ︸

:= ~J0

−ρ1
(
r1/Y1,A
r1/Y1,B

)
︸ ︷︷ ︸

:= ~J1

−ρ2
(
r2/Y2,A
r2/Y2,B

)
︸ ︷︷ ︸

:= ~J2

Therefore, the consumption fluxes ~J1 and ~J2 point in directions with slopes Y1,B/Y1,A and Y2,B/Y2,A, respec-
tively. If we use (nA, nB) = (n∗A, n

∗
B), the system looks like this:

nA

nB

~J0

~J2
~J1

(n∗A, n
∗
B)

(n0A, n
0
B)

Where we have also highlighted the directions along which ~J1 and ~J2 lie, i.e. the lines passing through (n∗A, n
∗
B)

and with slopes Y1,B/Y1,A and Y2,B/Y2,A. Coexistence will be possible if the slope of ~J0, i.e. (n0B−n∗B)/(n0A−
n∗A), lies between the slopes of these two lines:

Y2,B
Y2,A

<
n0B − n∗B
n0A − n∗A

<
Y1,B
Y1,A

(c) Show graphically what happens if (n0A, n
0
B) lies outside of the constraint, and write down the algebraic expression for the

steady-state concentrations n∗A, n∗B and densities ρ∗1, ρ∗2 corresponding to the two types of outcomes that would arise.

Solution
Referring to the figure above, if (n0A, n

0
B) lies outside of the coexistence region we can have either one or both

species going to extinction. In particular, if (n0A, n
0
B) lies between the blue hyperbola and the direction of ~J1

species 1 will dominate, and conversely species 2 will outcompete species 1 if (n0A, n
0
B); finally, if (n0A, n

0
B) lies

below the two hyperbolas, both species will go to extinction:
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nA

nB

extinction

co
exi

ste
nce

sp
. 1

do
m

in
at

es

sp. 2 dominates

Let’s assume for example that (n0A, n
0
B) lies in the area where species 1 dominates (the case for species 2 is

symmetrical). The point will follow ~J1 and thus move along the line passing through (n0A, n
0
B) with the same

slope as ~J1. At the steady state, (n∗A, n
∗
B) will lie on the intersection between this line and the nullcline ρ̇1 = 0:

nA

nB

(n∗
A, n

∗
B)

(n0
A, n

0
B)

Therefore, can find n∗A, n∗B by finding the intersection of these two curves. The nullcline ρ̇1 = 0 is:

1

v1AnA
+

1

v1BnB
= µ

On the other hand, the line along which the system moves is:

nB = q +m · nA

wherem = Y1,B/Y1,A (the slope of ~J1) and q can be found from the fact that the line passes through (n0A, n
0
B):

n0B = q +
Y1,B
Y1,A

n0A ⇒ q = n0B −
Y1,B
Y1,A

n0A

Therefore, the point (n∗A, n
∗
B) can be found by solving:

1

v1An∗A
+

1

v1Bn∗B
= µ n∗B = q +m · n∗A
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This can be done, for example, by taking the reciprocal of the equation of the line:

1

n∗B
=

1

1 +mn∗A

and substituting in the equation of the nullcline:

1

v1An∗A
+

1

v1B(1 +mn∗A)
= µ ⇒ µ =

v1B(1 +mn∗A) + v1An
∗
A

v1Av1Bn∗A(q +mn∗A)
⇒

⇒ µv1Av1Bm · (n∗A)2 + (µv1Av1Bq − v1Bm− v1A)n∗A − v1Bq = 0 ⇒

⇒ n∗A =
1

2µmv1Av1B

(
v1Bm+ v1A − µqv1Av1B +

√
(µqv1Av1B − v1Bm− v1A)2 + 4µmqv1Av21B

)
(which is the only acceptable solution, since the other one is negative). Substituting in the equation for the
straight line we get n∗B = q +m · n∗A.
Finally, from the equation for ρ̇1 at steady state we get:

ρ1(r1(n
∗
A, n

∗
B)− µ) = 0 ⇒ r1(n

∗
A, n

∗
B) = µ (15)

and therefore, from the equation for ṅA:

µ(n0A − n∗A)− r1(n∗A, n∗B)
ρ∗1
Y1,A

⇒ ρ∗1 = Y1,A(n
0
A − n∗A)

as stated above, the case where species 2 dominates is symmetrical, so:

n∗A =
1

2µmv2Av2B

(
v2Bm+ v2A − µqv2Av2B +

√
(µqv2Av2B − v2Bm− v2A)2 + 4µmqv2Av22B

)
where: m =

Y2,B
Y2,A

q = n0B −
Y2,B
Y2,A

n0A

and furthermore:
ρ∗2 = Y2,A(n

0
A − n∗A)

(d) Describe and explain the di�erence of the behavior obtained here compared to the ones obtained in class for two substitutable
nutrients.

Solution
In the case of substitutable resources, if we inflow of either of the two resources is very large, one of the two
species will dominate (according to their preferences). This happens because the nullclines intersect the axes
and therefore the area in the (nA, nB) space where both species go to extinction is finite. Here, however, this
is not true for essential resources: since the nullclines are now hyperbolas with non-trivial asymptotes (i.e., the
asymptotes are not the axes, see also the representation of the system in point (a)) the area where extinction
is possible extends to infinity. This means that even if we put a very large amount of one resource, let’s say
resource A for example, it is not guaranteed that species 2 will dominate (if we refer to the phase diagrams
plotted above). In fact, since both resources are essential species 2 also needs a minimum supply of resource 1
to grow. If this supply is not provided, species 2 will not be able to dominate the system even though resource
A is very abundant.
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