
PHYSICS 239 Spatiotemporal Biodynamics 

Homework #3 

Due Wednesday Feb 23, 2022 

[Note: Those not from math/physics background need not attempt problem(s) indicated by *] 

 
1. Proteome allocation and the Monod growth law. In class we went over key elements of the 
proteome allocation analysis for bacterial growth. In this problem, you will work them out step-
by-step using a concrete example, for the growth of E. coli on lactose as the sole carbon source. 
From a few assumptions, we will obtain quantitatively the growth rate and the expression of the 
lac operon for different concentrations of lactose, i.e., Monod’s growth law and the phenomenon 
of catabolite repression. 

In the following, all quantities correspond to amount contained in 1-mL of exponentially growing 
culture at optical density (OD) = 1, referred to as “OD×mL” for short. 1 OD×mL of culture 
corresponds to 10! ∼ 10" bacterial cells depending on the specific culturing condition. We will 
refrain from using per cell quantity because the amount per cell can vary 10x due to change of 
cell size in different growth conditions (including for cells grown in different lactose 
concentrations to be studied here). Instead, amount per OD×mL is more invariant. In particular, 
1 OD×mL of culture contains a total dry mass of ~0.5	𝑚𝑔 and total cytoplasmic water content of 
~1	𝑚𝑔 (or 1	𝜇𝐿 in volume) for most conditions characterized. The total protein content in OD×mL 
varies moderately, from 0.3	𝑚𝑔 at fast growth to 0.4	𝑚𝑔 at slow growth. For simplicity, we will 
take total protein per OD×mL to be 0.35	𝑚𝑔. 

Definition of symbols to be used below: 𝑁# and 𝑀# are, respectively, the number and mass of 
protein X per OD×mL culture. 𝑀 = 0.35	𝑚𝑔 is the total mass of cellular proteins per OD×mL of 
culture. 𝑚# is the molecular weight of protein X. 𝜙# ≡ 𝑀# 𝑀⁄  is the mass fraction of protein X 
among all cellular proteins; it is referred to as the “proteome fraction”, a measure of “protein 
abundance”. 

(a) Conversion between proteome fraction and concentration: The average intracellular 
concentration of a protein X, denoted as [𝑋], can be taken as the number of proteins in OD×mL, 
𝑁#, divided by the total cytoplasmic water volume in OD×mL, 𝑉. Derive a relation between the 
concentration [𝑋]  and the proteome fraction 𝜙#  in terms of the molecular weight 𝑚# . For 
typical proteins 300 aa in length, find its concentration in 𝜇𝑀 if the proteome fraction is 1‰ 
(part per thousand).  You can take the average mass of an amino acid to be 110 Daltons. 

[Note: Below we will only refer to protein concentrations as proteome fractions. It turns out that 
the latter is more readily obtained experimentally, e.g., by proteomics or by ribosome-profiling. 
It is also a natural quantity to work with in models. The above exercise is meant to let you know 
that you can always convert proteome fraction to a more familiar concentration unit, e.g., 𝜇𝑀.] 

(b) Protein synthesis flux by ribosomes: Let 𝐽$  denote the flux of protein synthesis, in unit of # aa 
polymerized per OD×mL of culture. For a culture growing exponentially at the specific rate 𝑟, this 
is just 𝑟 ⋅ 𝑀  (with the total protein mass 𝑀  expressed in # aa/(OD×mL)). Molecularly, protein 
synthesis flux can be written as the product of the ribosome elongation rate (denoted as 𝜀) and 



𝑁$ , the total number of ribosomes per OD×mL of culture. [Here we have assumed that all 
ribosomes are engaged in translation at the same speed. This turns out to be a reasonably good 
approximation, breaking down only at very slow growth.] 

• Show that the above leads to the growth law 
𝜙$ = 𝑟/𝑘$  (1) 

where 𝜙$ ≡ 𝑀$/𝑀 is the proteome fraction of ribosomal proteins, 𝑀$  being the total mass 
of r-proteins per OD×mL of culture. Express 𝑘$  in terms of 𝜀  and 𝑚$ , the weight of all r-
proteins in a ribosome.  

• Adding up all r-proteins in the ribosome of E. coli gives 7336 aa. However, for the ribosomes 
to do its job, many helper proteins such as elongation factors are also needed. These proteins 
add up to another 60% in mass. Thus, we can take the “molecular weight” of an effective 
ribosome as 𝑚$ = 1.6 × 7336	𝑎𝑎 . Further using the measured elongation rate of 𝜀 =
16	𝑎𝑎/𝑠, find the value of 𝑘$  in unit of ℎ%&. 

• What is the theoretical maximum growth rate if a cell contains only ribosomes? What is the 
corresponding doubling time? [Note the factor of ln 2 in the conversion.] The fastest doubling 
time observed for E. coli is ~17	𝑚𝑖𝑛, when the culture contains many nutrient ingredients 
including all amino acids and nucleotides. What is the corresponding ribosomal fraction 𝜙$  
at this fastest growth rate? The remaining fraction of the proteome (𝜙') found at the fastest 
growth rate, are comprised of obligatory proteins needed for house-keeping functions. 
Empirically, 𝜙'  is found to be approximately growth-rate independent even though 𝜙$  
changes according to Eq. (1). 

(c) Carbon uptake flux: Consider growth of E. coli in minimal medium with a single carbon source, 
without the supplement of amino acid and other substances. Let 𝐽(  denote the flux of carbon 
uptake, in unit of # substrate molecule taken up per time per OD×mL. Molecularly, this can be 
written as the product of 𝜔), the specific rate of the uptake enzyme E, and 𝑁), the number of 
uptake enzymes per OD×mL of culture. 

• Express 𝐽(  in term of the proteome fraction of the uptake enzyme, 𝜙) ≡ 𝑀)/𝑀, and the 
molecular weight of the uptake enzyme, 𝑚). 

• The condition of flux balance can be stated as 𝐽$ = 𝑌 ⋅ 𝐽( , where the yield 𝑌 represents the 
conversion factor from the substrate molecule to aa. Using flux balance and the expression 
you obtained above for 𝐽$  and 𝐽( , derive the relation 𝜙) = 𝑟/𝑘)  and find an expression for 
the parameter 𝑘)  in terms of the molecular parameters (𝜔) , 𝑚)) and the yield 𝑌. 

• Consider the case where lactose is the sole carbon substrate. 1	𝑔  of lactose is known to 
produce 0.5	𝑔 of dry mass. Based on the protein:dry mass ratio given above, work out the 
value of 𝑌 for lactose. Express it in unit of # aa/lactose molecule and in OD/mM lactose. 

• Given that the specific uptake rate for the lactose transporter (LacY, the lac permease, 417aa 
in length) is 𝜔) = 3/𝑠 in saturating lactose concentration, write down the value of 𝑘)  for 
lactose uptake in unit of ℎ%&. 

(d) The lactose transporter is one of a suite of “carbon catabolic proteins” expressed when E. coli 
is short of carbon supply. The other proteins include beta-galactosidase (LacZ) which degrades 
lactose into glucose and galactose (which then enter central metabolism), and other enzymes 



not specific to lactose degradation. Let the proteome fraction of all these carbon catabolic 
proteins be 𝜙( . Since the expression of LacY is co-regulated with these other catabolic proteins 
and thus have the same growth-rate dependences, we can take the proteome fraction of LacY, 
𝜙), to be a fixed portion (𝜂)) of 𝜙( . This leads to   

𝜙( = 𝑟/𝑘(  (2) 
where 𝑘( = 𝜂)𝑘).  

For cells grown in minimal medium without the supplement of amino acids, etc., another 
significant fraction of the proteome is comprised of anabolic proteins, e.g., enzyme for 
biosynthesis of amino acids. Let the total proteome fraction of these enzymes be 𝜙*. Empirically, 
a linear relation between the growth rate 𝑟 and 𝜙* similar to Eqs. (1) and (2) has been found,  

𝜙* = 𝑟/𝑘* (3) 
with a coefficient 𝑘*. It turns that numerically, 𝑘* ≈ 𝑘$.  

Finally, there is the constraint that sum of all proteome fractions add up to 1, i.e.,  

𝜙$ + 𝜙( + 𝜙* = 𝜙+,- (4) 
where 𝜙+,- ≡ 1 − 𝜙', with 𝜙' being the fraction of obligatory proteins encountered in (b). 

• Combine Eqs. (1)-(4) to show that the growth rate depends on the parameter 𝑘(  as  

𝑟 = 𝑟.
𝑘(

𝑘( + 𝑘$*
	. (5) 

Express the lumped parameter 𝑟(  and 𝑘$*  in terms of 𝑘$  and 𝜙+,-  and find their values. 
How would you interpret the meaning of 𝑟.  and how would you test this experimentally? 
Explain the sense by which the ratio 𝑘(: 𝑘$* is regarded as a measure of “carbon quality”. 

• For E. coli growing on saturating concentration of lactose, the growth rate is found to be 
~1/ℎ. Find the corresponding value of 𝑘( . What is the ratio 𝑘(: 𝑘$* for lactose?  Find the 
proteome faction 𝜙$ , 𝜙*, 𝜙(  during growth on lactose.  

• Based on the value of 𝑘)  you calculated in (c), what share of catabolic proteins is LacY? What 
fraction of the entire proteome is LacY?  

• E. coli is found to grow on saturating glycerol at rate ~0.7/ℎ and on saturating galactose at 
rate ~0.35/ℎ. What are the corresponding carbon quality index? Based on the development 
above, give two distinct molecular causes by which a substance may be of poor carbon quality. 

(e) To derive the Monod growth law, we consider the lactose concentration in the medium to be 
maintained at a constant value [𝐿]. Then the lactose uptake rate per LacY molecule is given by 
the Michaelis-Menten kinetics as 

𝜔)([𝐿]) = 𝜔)
[𝐿]

[𝐿] + 𝐾)
 (6) 

where 𝜔) = 3/𝑠 is the uptake rate used above, and 𝐾)  is the equilibrium binding constant of 
lactose to LacY. Express 𝑘(  in terms of 𝜔)([𝐿]) and use it in Eq. (5) to derive the Monod growth 
law: 

𝑟([𝐿]) = 𝑟/
[𝐿]

[𝐿] + 𝐾0
 (7) 



where 𝑟/ is the growth rate under saturating concentration of lactose as given by Eq. (5). Express 
the Monod constant for lactose, 𝐾0, in terms of 𝐾)  and the basic parameters of the growth laws 
in Eqs. (1)-(4). Find the value of the Monod constant if 𝐾) = 0.3	𝑚𝑀. Can you explain why the 
Monod constant is much smaller than the binding constant 𝐾)? 

(f) Solve for 𝜙(([𝐿]), the fraction of catabolic proteins at different lactose concentration [𝐿]. 
Show that  

𝜙(([𝐿]) = 𝜙(+,- ⋅ (1 − 𝑟([𝐿])/𝑟() (8) 

and give the value of 𝜙(+,- . Eq. (8) describes a linear decline in the abundance of catabolic 
proteins with increasing growth rate, referred to as the “C-line”. It is a quantitative statement of 
the phenomenon of “catabolite repression” ubiquitous in microbiology, wherein the expression 
of catabolic enzymes is inhibited in medium with improved carbon availability. Explain in your 
own words why should cells reduce the catabolic proteins when carbon is more available.  

2. Competition for nutrient. Two species described by densities 𝜌&(𝑡) and 𝜌1(𝑡) grow on the 
same nutrient source, of concentration 𝑛(𝑡). Suppose the growth rate of species 𝑖 is given by the 
Monod growth law, 𝑟2(𝑛) = 𝑟2,/ ⋅ 𝑛/(𝑛 + 𝐾2), the death rate is given by 𝜇2 , and the nutrient 
influx is 𝑗/. Find a criterion on the physiological parameters (𝑟2,/, 𝐾2 , 𝜇2) in order for species 𝑖 to 
survive in the steady state.  
 
3*. MacArthur’s model of resource competition. MacArthur’s model applied to 2-species (of 
densities 𝜌&, 𝜌1) and 2 nutrients (of concentrations 𝑛*, 𝑛4) is   

𝜌̇& = (𝜈&*𝑛* + 𝜈&4𝑛4) ⋅ 𝜌& − 𝜇&𝜌&, (1) 

𝜌̇1 = (𝜈1*𝑛* + 𝜈14𝑛4) ⋅ 𝜌& − 𝜇1𝜌1, (2) 

𝑛̇* = 𝛾*𝑛* ⋅ (1 − 𝑛*/𝐾*) − (𝜈&*𝜌& + 𝜈1*𝜌1) ⋅ 𝑛*, (3) 

𝑛̇4 = 𝛾4𝑛4 ⋅ (1 − 𝑛4/𝐾4) − (𝜈&4𝜌& + 𝜈14𝜌1) ⋅ 𝑛4 . (4) 

where 𝜈25  is the consumption matrix indicating the uptake preference of species 𝑖 for nutrient 𝛼, 
𝜇2  is the death rate of species 𝑖, and 𝛾5  is the generation rate, 𝐾5  is the concentration scale of 
nutrient 𝛼 in the habitat.  (The yield factor has been omitted.) 

(a) Assume the existence of a non-trivial steady state with 𝑛*∗ , 𝑛4∗ , 𝜌&∗, 𝜌1∗ all being non-zero. From 
𝜌̇2/𝜌2 = 0 in Eqs. (1) and (2), show that in the limit the death rate 𝜇2 → 0, the steady state 
concentrations 𝑛5∗ → 0.  Using this result in Eqs. (3) and (4), show that 𝑛̇5/𝑛5 = 0 lead to the 
following equation for the steady state densities, 

]
𝜈&* 𝜈1*
𝜈&4 𝜈14^ ⋅ _

𝜌&∗
𝜌1∗
` = ]

𝛾*
𝛾4^ 

(b) Write down the solution of the above matrix equation for 𝜌&∗ and 𝜌1∗. Show that the feasibility 
condition, i.e., 𝜌&∗ > 0 and 𝜌1∗ > 0, can be written as two conditions between the environmental 
parameters 𝛾*, 𝛾4, and 𝑚2 ≡ 𝜈24/𝜈2*, which describes the nutrient preference of species 𝑖. Plot 
the “ecological phase diagram” in the space (𝛾*, 𝛾4), marking clearly the region of coexistence, 
and the region of dominance/extinction.  



(c) For a fixed environment parameterized by 𝛾 ≡ 𝛾4/𝛾* (which indicates the relative nutrient 
availability), plot the “physiological phase diagram” in the space (𝑚&, 𝑚1) by indicating which 
regions of this space give coexistence, and which regions give dominance of species 1 or 2.  

(d) What is the ‘optimal’ value of 𝑚& that species 1 should take on to maximize its existence (i.e., 
survival) if it expects species 2 to take on a random value of 𝑚1? or if it expects species 2 to take 
on the ‘optimal’ value of 𝑚1? If the 𝑚 values of both species are close to this ‘optimal’ value, 
what would be the probability that one species becomes extinct if the environmental parameter 
𝛾  can take on a value within a finite range 𝛿  about a mean value, 𝛾̅  with equal probability? 
[Assume the environment can vary rapidly while 𝑚2, determined by genetics, is frozen over the 
scale of environmental variation.] What range of 𝑚2  should each species 𝑖 take on to maximize 
its existence in a fluctuating environment if it can coordinate with the other species which is also 
interested in maximizing its existence? What danger is there if the other species ‘cheats’? 
[Note: Your response to (d) is not expected to be quantitative.] 

4. Competition for essential nutrients.  The dependence of the growth of bacterial species 𝑖 on 
two essential nutrients A and B is given by 

𝑟2(𝑛*, 𝑛4) = _
1

𝜈2*𝑛*
+

1
𝜈24𝑛4

`
%&

 

where 𝜈25  is the single-nutrient consumption efficiency (when the other nutrient is in saturation) 
and 𝑛5  is the concentration of nutrient 𝛼 as in Problem #2. Unlike substitutable nutrients, the 
uptake of nutrient 𝛼 by species 𝑖 is given by 𝑟2 ⋅ 𝜌2/𝑌2,5, where 𝜌2  is the density of species 𝑖, and 
𝑌2,5  is the yield of species 𝑖 for nutrient 𝛼. This leads to the following set of consumer-resource 
equations 

𝜌̇& = 𝑟&(𝑛*, 𝑛4) ⋅ 𝜌& − 𝜇𝜌&, 

𝜌̇1 = 𝑟1(𝑛*, 𝑛4) ⋅ 𝜌1 − 𝜇𝜌1, 

𝑛̇* = 𝜇 ⋅ (𝑛*/ − 𝑛*) − 𝑟&(𝑛*, 𝑛4) ⋅ 𝜌&/𝑌&,* − 𝑟1(𝑛*, 𝑛4) ⋅ 𝜌1/𝑌1,*, 

𝑛̇4 = 𝜇 ⋅ (𝑛4/ − 𝑛4) − 𝑟&(𝑛*, 𝑛4) ⋅ 𝜌&/𝑌&,4 − 𝑟1(𝑛*, 𝑛4) ⋅ 𝜌1/𝑌1,4 	, 

for a chemostat-based system where 𝜇 is the dilution rate and 𝑛5/  is the inflow concentration of 
nutrient 𝛼.  In this problem, you will derive the feasibility conditions for this system using Tilman’s 
graphical approach.  

(a) Without solving the equations algebraically, sketch the conditions for 𝜌̇2 = 0 in the (𝑛*, 𝑛4) 
plane. Indicate the location of (𝑛*∗ , 𝑛4∗ ) where both 𝜌& and 𝜌1 are finite. On the plot, also mark  
the point (𝑛*/, 𝑛4/) which is proportional to the nutrient inflow. Next, find an algebraic expression 
for 𝑛*∗ , 𝑛4∗  in terms of the environmental and physiological parameters. [Hint: You can first use 
the matrix inversion formula for 𝑛5%&.]  

(b) Show the balance of nutrient fluxes at (𝑛*∗ , 𝑛4∗ )  graphically using a vector relation among the 
nutrient influx 𝐽/ and the consumption fluxes 𝐽&, 𝐽1, as done in class. Describe the condition for 
coexistence graphically, and write down the corresponding algebraic expression involving the 
constraint on 𝑛*/, 𝑛4/ . 



(c) Show graphically what happens if (𝑛*/, 𝑛4/) lies outside of the constraint, and write down the 
algebraic expression for the steady-state concentrations 𝑛*∗ , 𝑛4∗  and densities 𝜌&∗, 𝜌1∗ 
corresponding to the two types of outcomes that would arise.  

(d) Describe and explain the difference of the behavior obtained here compared to the ones 
obtained in class for two substitutable nutrients. 

 


