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Coexistence of 3 species on two nutrients
Consider the following Consumer-Resource model for 3 species (of densities p;, i € {1,2,3}) and 2 substitutable nutrients
(of concentrations nq, o € {A, B}).

pi = (Viana + ViBnB) - pi — j - pi

Ng = - (ng - na) - ('Ulapl + v2qp2 + U3ap3) : na/Ya

Previously, we worked out that 1f there are two species with nutrient A preferred by species 1 and nutrient B prcferred by

species 2 (i.e., if via > Vo4 andvap > v1B), then coexistence of species 1 and 2 are expected for some range of the nutrient
i ified by (n%, n? his proble ked k hat happens whe rd ies is introduced
influx specified by (n'y, ng). In this problem, you are asked to work out what happens when a 3 species is introduced.
For simplicity, let this species have intermediate nutrient preference, i.c., V14 > v34 > V24 and vap > V3B > V1B, 5O
that A is still most rapidly taken up by species 1 and B is by species 2.

By setting % pi = 0 and demanding the steady state density p} > 0 for all 3 species, obtain three conditions on the
steady-state nutrient concentrations (n'y, n’y;). Sketch these three conditions in the (n.a, ng) plane and show that there
is gcnerically no way to satisfy all three conditions simulmneously for arbitmry values of the nutrient uptake coeﬁlcicnts
Viq. Consequently, one of the density must be at zero in steady state.

Solution
If we set %pi = 0, assuming p; # 0 we get:

U= vijaAnA + v;BNB

which is an equation for a line:
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In order for the three species to coexist, we need three lines like this to intersect in one point. However, if the
uptake coeflicients vjq have arbitrary values this never happens:

The intersections of these lines are three alternative stcady states where only two species coexist.

(b) Write down the three conditions if the nutrient uptake coefficients are of the special form motivated in class, Vi, = V2 Mia
where 1o describes the allocation of uptake enzymes for nutrient « by species i withm;a +n;5 = 1 for each 4. [Convince
yourself that the nutrient preferences V1A > V34 > U and vog > U3 > U1B implies that A > 134 > 772A-]
Show that there is a special pair of nutrient conditions (%, nj;) for which all three conditions are satisfied, hence all 3
species can coexist. Plot the three conditions in the (n A, T B) plane and show for yourself geometrically how this becomes
possible. Show that if a 4th species is introduced with v4q = VM40 and Nga + nap = 1, the same solution (nky,n%g)
still holds (and hence the 4% species can also coexist).

Solution
Ifviq = vg *Micrs then the three conditions become:

0 0 -
po=vaniany +vpnipng i€ {1,2,3}
Since 9j4 + nip = 1, these three equations can be solved if:
« _ M .
ny= 0 np = 'UO
B
In fact, if we use these expressions in the above expression we get:

VAmianl + vgnipng = U%nmv% + v%vaio = pu(nia +mip) = p
A B



which therefore solves the equation. Therefore, this time the three lines p]otted above do intersect in a single
point. Since v14 > V34 > V24 and V2B > V3B > V1B, the situation is the following;

np

If we introduce a 4 species, the equations we have to solve now are:

= v4many +vmpny
f = vM2AnY + vn2ENY
= vqmzan’y + vinzpny
= v4maan’y + vhnupny

However, similarly to what was shown above, thanks to the fact that ;4 + m;p = 1 this system still has
(n*,ny) = (u/v9, u/v}) as a solutio Therefore, the 4 species will coexist with the other three. Graphi-
cally spcaking7 there will be an additional line in the plot above that passes through the same (nz, n*B) point.

(¢) From here on, we also take the slow dilution limit, j1 < v9nQ, to focus on inter-species competition. Let fractional species

abundance be v; = p¥/(p} + ph + p}) and lec che fraction of nuerient influx be fo = nQYa/(n%4Ya +n%Y5).
Show that in steady state, the abundances satisfy the condition

fa=mat1 + a2 + n34%3

Plot the above condition as a plane in the space (11,12, 3) for fa = 0.5 and (14,124, m34) = (0.75,0.25,0.5).
Plot in the same space also the condition 1 + 2 + b3 = 1 which follows from the definition of fractional abundance.
Show that the two planes intersect to form a line with 11 > 0. This line describes the possible abundance range for the
coexisting species. Find the range of 11 where all 3 species are present, and plot 1, 13 vs 1p1 within this range. Comment
on the degeneracy of the solutions.

Solution

Let’s take the equation for nutrient o at steady state:

*

. * n * * *
e =0 = pnd —nk) =200 (Map] + n200s + M3aps)

Yo
If we substitute n¥, = p1/v8 we get:
o W K0 0
1o — —5 = oy ValMapl + M2apz + M3ap3) = naYa = (Mapl + M20p3 +Maps) (1)
vy v Yy

"Notice that when we plugeed n¥ and n% in the computation shown above, the result is true for any species 4. Therefore, as lon
plugg A B P ) Sp ) g
asAa+1mip =1 for all species, we can add as many species as we want and they will all coexist.



where we have also neglected the term proportional to pi2, since we are in the slow dilution limit. If we now
substitute ¥; = pf/(p} + p5 + p3), we get:

no Yo = (math1 + 202 + n3ats) - (o} + p5 + p5) 2)
From Eq (1) we can determine the value of p} + p3 + p3:

n4Ya = niapi + n2aps + n3aph

0 . N . = we sum the equations =
npYp = mppi + n2BP5 + N385

= QYA +nRYp = (ma+mg)pi+ (n2a +m28) ps + (N34 + n38) p5 =
—_———

/

=1

=1

=1

= pi+ s+ p5 =n%Ya +npYe
Therefore, using this in Eq. @):
ndY,
nleA + n%YB

In particular, for resource A we have:

= fa = 771a'¢1 + 772a¢2 + 773a¢3

fa=ma1 +mate + n3av3
The plot of the plane and the condition 1 + 2 4 13 = 1 is the following;

L fa= @i nia+ Wa Moa+ W3 Maa
Lw+rgprys =1

We can see from the plots that the line where the two surfaces intersect lies in the part of the space where 11 > 0.
In order to find the range of 91 where all species coexist and in order to plot 92 and 13 vs 11, it is convenient

to write the parametric equation of the line (i.e., the intersection of the two planes). In order to do this, we can
treat 41 as a “free parameter’ﬂ and solve:

fa=mat1 +n2av2 + n34%3
Y1+ Ya+YPs =1

>This is the general strategy to find the parametric equation of a line in three dimensions: you treat one of the variables as a parameter
and solve the equations of the intersecting planes.




(d)

(which is now a system of two equations in two unknowns, since we are treating wl asa parameter). We obrtain:

 fa—m3a+ (34 —ma)n  —(fa—m2a) + (ma —m2a)t
g = Py =

2A — 1M3A 2A — 1M3A

If we plug in the numbers provided in the text, we get:

o =1 3 =1—2Y

Therefore, the range of 1)1 where all three species are present will be given by:

Wy >0 P >0
= 1
3 >0 P < 3
Therefore, the range of 1 where all species coexist iﬂ 0 < 91 < 1/2. The plots of 12 and 13 vs 91 will

therefore bCZ

o Vs

¥ 1 Y1

D[ =

In this case we have a continuous space of possible steady-state points (the line given by the intersection of the
planes as shown above). In other words, there are infinitely many possible steady states, each one with different
fractional species abundances (11, ¥2, 93).

Show that the 3 species can coexist as long as 124 < fa < n3a (for N34 also falling in between 1M 4 and n2.4). For
(ma,n24,m34) = (0.75,0.25,0.5), plot the ecological landscape, eg., for each value of f , the range of ¢ where all
3 species can coexist. [This should be as an area in the (fa, 1) space.]

Solution

We can show that the three species coexist when 24 < fa < 134 by plotting the two planes for different
values of f4. For example, when f4 < 124 we have:

3Notice that this is also a mathemarical way to show that the line where the two planes intersect has 191 > 0



Jfa <m2a
3

1 W1+ Yo + Y3 =1

fa=ma1 + n24v02 + 13403

Y1

where we have taken into account that, since 714 > 134 > 124, we have é—é‘ > 7;;—“1‘4 > 7{1—“:4. Therefore, since

the two planes don’t intersect in this case, the three species will not be able to coexist.
When o4 = fa < n34 we have:

m2A = fa <134
3

Y2

Y1

Since now fA/T]QA = 1, the two planes intersect in one point where all three species coexist.
If we now consider Noa < fa < M3a:



m2a < fa <mn34
3

(G

Y1

Now fa/n24 > 1 and the two planes intersect in a line. Therefore, the three species can coexist.

If we now use (914,724, 134) = (0.75,0.25,0.5), the ecological landscape is:

T T

fa

(€) Repeat the above plot in the space of (fa,13). For what environmental parameter (f.4) can you expect the abundance of
the “intermediate species” (species 3 in this case) be maximal? What happens to the other two species in this case? Contrast
this with the dominance conditions for the two “key-stone species” (species 1 and 2). [Tt may be useful to repeat the plots of
part (c) for fa at selected special values.]

Solution

The plots for 13 and 13 are:



(a)

o Y3
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Therefore, the value of f4 for which 93 is maximal is f4 = 0.5 = 734. From the three ecological plots we see
that each species’ population is maximized when f4 = MiA: the population of a species is maximized when the
nutrient influx matches the species’ uptake.

Finally, when 13 is maximixed (i.c., f4 = N34 = 0.5), as we can see from the ecologica] phase diagram we can
have 13 = 1 but it is not the only choice (the whole line that goes from 93 = O to 93 = 1 at fa = 0.5 s
part of the phase diagram). On the other hand, when either 91 or 12 is maximized, the only possibilities are
11 = 1 and 99 = 1, respectively. In other words, when f4 is such that cither of the two “keystone species” is
maximized (i.e., fo = M4 or fa = 1m24) the other two are extinct, but when f4 = 134 we can still have all
three species coexisting.

Ecological phase diagram for 3 nutrients
Consider the Consumer-Resource model for 3 species (of densities p1, pa, p3) and 3 substitutable nutrients (of concentrations
na, ng, no):

pi = (Viana +vipnp + vicne) - pi — 1 pi

o = p - (n) —1a) — (V1ap1 + V20p2 + V3ap3) - Na/Ya

Let the nutrient uptake coefficients be of the special form vy, = v9 - ;o where > o Mia = L. Let us also take the slow
dilution limir, p < Ugng, to focus on inter-species competition.
Write down the conditions on p; obtained from the steady-state conditions 1o, = 0. Add up these equations to recover the

constraint on mass conservation. Express these 3 conditions in terms of the fractional species abundance 1; = pi/ 3 pj,
and the fractional nuerient influx, fo =ndYy/ > 5 n%Yg.

Solution
From 74 = 0 we get:

*
Mo

v (Viap] + V2003 + V3aP3)
[0

0 *
HNg — pNg =

Similarly to what has been done above, we can substitute nj; = ,LL/Ug (which is still a solution for che systcm)
and neglect the quadratic term in g to obrain:

ngYa - 771a/)>1k + 77204/); + 7730[/0;



(b)

If we sum these three expressions for o = A, B, C' and use n;4 + 1iB + nic = 1, we get:
P+ 3+ p5 = n%Ya +npYe +ngYe
If we now substitute 1); in the above equation and use the constraint on mass conservation, we get:
no Yo = (math1 + 202 + 3ats) - (0T + p5 + p5)
and therefore:

ndY,
nOAYA + R%YB + n%Yc

= fo = Ma¥1 + M2aV2 + N3aY3

Use1ps = 1 —1p1 — 1 to reduce the 3 equations in (a) to two equations for 11 and 1a. Solve the two linear equations to
obtain expressions for Y1 and . From the conditions 11 > 0 and 1y > 0, obtain two constraints involving fo — N34
and Niae — M3a-

Solution

ThC thrce Cquations are:

fa=mar +neabs + n3a13
fB = mp¥1 + n2BY2 + N3BY3
fo = mec¥1 + nec2 + n3cis

We can for example substitute 93 = 1 — 1)1 — )2 in the first two equations to get:

(ma —n3a)¥1 + (24 — n34) 02 = fa — 134

(mB —n3B)¥1 + (2B — M3B)Y2 = fB — N3B

Which can also be written in matrix form:

<771A — 134 124 — 773A> <¢1> _ (fA - 773A>
MB —1N3B 2B — M3B) \¥2 fB—"mB

=M

The solution of this equation is given by:

<¢1) _ 1 ( (2B — n3B)(fa —n34) — (124 — 134)(fB — 13B) >
() det M \—(mB — m3B)(fa —n34) + (ma —n34)(fB — 13B)

If we now assum(ﬂ det M > 0, from 91 > 0 we get:

fB—"m3B _ M2B —1M3B
fa—1m34 7 m2a— 134

IN

(n2B — n3B)(fa —n34) > (m2a —n3a)(fB —m38) =

On the other hand, ¥5 > 0 yields:

fB—"m3B _ MB—"3B
fa—m4 = ma—1n34

Y

(ma—n34)(fB —n38) > (mB —n38)(fa —n34) =

*This corresponds to assuming that:
A — 1M3A S B — 13B
24 — 13A 2B — N3B
As shown below, this assumption has some consequences in part (d).

9



(c) Apply the condition Y1 + 1p2 < 1 (from 13 > 0) to obtain a 3 constraint on the parameters.

(d)

Solution
If we set 11 + 12 < 1, we get:

(n2B—n3B)(fa—n34)—(m2a—n3a)(fB—n38)—(mB—n38) (fa—n34)+(Mma—n34)(fB—n3B) < det M =

= (ma —m34)(m2B —m3B) — (MB — M3B)(N24 — 134)

which can be simpliﬁcd to:

fB—mp < 2B =B
fa—ma = ma—ma

Show the constraints obtained in (b) and (c) have a simple geometric representation in the (fa, fB) space. [Hint: The 3
points (771- AN B) form a triangle. Take (773 A, 13 B) as the origin and plot the 3 lines of the 3 constraints from above.] For
each of the T regions partitioned by the lines, indicate the phase of the region, e.g., 11 = 0, 2 > 0, 193 > 0.

Solution
The constraints obtained in (b) and (c) can all be represented as lines in the (f4, fB) space. The representation

of the constraints is the following:

fB
1

B

mB

T13B

10



(e)

Notice that this plot is in agreement with the assumption

det M >0 = MATBA_ B~ BB
M2A — 734 "2B ~ "13B

that we have introduced before. In fact, this assumption can be rewritten as:

mB — N3B < 2B — N3B
A — 7134 24 — 1M3A

which means that the slope of the blue line in the plot above is smaller than the slope of the orange line.

For the more mathematically oriented: Add a 4th species, characterized by v4q = V0 - Naq, o the community with 3
nutrients. Show that p;/p; = 0 still holds with p; > 0 fori € {1,2,3,4}. Repeat the analysis in (a) through (c) ro
obtain modified conditions on 11 and 1p2. Explain that if the representation of Naq in the (fa, fB) space is a point located
in the interior of the triangle defined by the 3 vertices (Nn1.4, mB), (N24, M2B), (N34, M3B), then feasibilicy conditions
for coexistence obtained above are unchanged with 14 > 0.

Solution
Fori € {1,2,3,4} we can write:

pi
— = ViANA T UBNB + vicnc — [
(2

and therefore at steady state we have:

pi
= = viAny + vipnp + vicng — [
i

if we substitute nf, = /00 and vio, = VIN;ia:

p—i = U%nm% + U%TliB% + vocmcio —p=pmia+mnis+mc—1)=0 (3)
Pi VA VB ve

Furthermore, from 7, = 0 we have:
Ma¥1 + M2a¥2 + N3a¥3 + Naats = fo
and plugging in 3 = 1 — 9 — 3 — Ps:
(ma —n3a)¥1 + (n2ea — m34) V2 + (Maa — n34)Ya = fa — 134

(mB —mB)Y1 + (2B — M3B)Y2 + (uB — M3B)Ya = fB — M3B

This is equivalent to “shifting” f4 and fp in the conditions found above to:

fa=fa— (naa—n3a)Us fB =B — (4B — n3B)1s

so the results found above (including the feasibility conditions) are still valid with fo, — f).

11



3.

(a)

Mutualistic interaction in the batch culture

In class, we consider the problem where a species (1) of bacteria consumes a substance A and excretes a substance B, with
B being toxic to the excreting species but taken up as nucrient for growth by another species (2). Consider the case where
species 1 and 2 are placed in a “batch culture” (e.g., a flask) where the substance A is provided in saturating concentration,
and there is no dilution. Assume that the flask is very large so you don’t have to worry about cells getting too dense. Let
p1, p2 denote the density of the two species and np denote the concentration of substance B. Let the replication rate of
the two species be r1(np) = 11,0/(1 + np/K) and o = rognp/(np + Kp) where 1,9 and ra o are the growth
rates of the two species under saturating nutrient, Kiisthe half—inhibimry concentration, and K g is the Monod constant
for species 2 to grow on B. Finally, B is excreted by species 1 at rate 7y per cell and the yield of species 2 growing on B is
Ys.

Find the growth rate X where the two species grow at the same rate. Find the nutrient concentration n'y at this steady
state, and find the ratio of the two species.

Solution
The equations of the system are the following:
P2

p1 =r1(nB)p1 p2 = r2(nB)p2 np =p1— Tz(nB)fB

When the two species grow at the same rate we have ri(nj) = r2(nj), ie:

o =20 (ng)” + (r2,0 — ri0)np — ri0Kp =0
1+ KB np+ Kp Ky
I

and the only acceprable (i.c., positive) solution of this quadratic equation is:

K;
27‘2’0

Kp
ng = 1,0 — 12,0 + \/(7“2,0 —7r10)% + 4?“1,07“2,07
i

Therefore, the growth rate at which both species are growing at the same rate is:

A = " (TL* ) _ _ 2T1,0T2,0
— ==
1,0 + o0 + \/(7“1,0 +1r90)% + 47“1,07"2,0%
or alternatively:
K[ KB
r2(np) 2(Kp — K1) (ri,0 +720) + \/(7"1,0 12,0)? + 4r1,072,0 K,

12



These two expressions are equivalent. In fact, if we call S := (7”170 - T270)2 + 47“1707“270% we have:

*

211,072,0 Ky
ri(ng) = ro(ny = — = [— r1,0 +120) + \/5} =
( 5) (ns) 7’170-1—7‘27()4-\/? 2(Kp — K7) ( )

= 27“1707“270 . Q(KB — KI) = K[ (TLD + 72,0 + \/§> <—T170 — 720 + \/§> =

= Aryorao(Kp = Kp) = Kp [=(r +720)" + 5] =

Kp
=K |:—(7’170 + 7’270)2 + (7’170 — 7‘2,0)2 + 47"1,07‘270}{1] =

Kp
= Kj (—47“1,07’2,0 + 4?"1,07“2,0K> =
I

K
= KI . 47"1,07"2’0 <[£ — 1> = 4’/“1707"2,0(KB — K])

and so 4T170T270(KB —Kp) = 4ry oro,0 (Kp— K1) = 1=1,whichmeans the equation rq (n%) =79 (n*B)
is solved. Graphically, the situation is che following:

1, T2
1,0
720 F\----------------- ro(ng)
A 777\
|
|
! o
} ri(nB)
lv nB
np

To find the ratio of the two species at stcady state, we can plug A=To (n*B) intong = 0:

« 2 Py Ym
=\ = = =-— 4
(b) Show that this steady state is stable by considering what happens if the nutrient concentration is transiently different from
np.
Solution

Ifnp 2 njy we have ra(np) 2 ri(npg) and therefore pa > p1. This, however, means that ng < 0, which

13



()

means that the nutrient concentration goes back down towards n;.

On the other hand, if np < n}, m2(np) S r1(np) and so pa < p1 and np > 0, which means the resource
concentration goes back up towards nj. Therefore, however we perturb the resource concentration it will go
back to n;, which is therefore stable.

Next consider the case where species 2 is absent. Let the starting density be p1(0) = po at time t = 0. Derive a
relation between p1(t) and np(t) by observing that dp1/dnp = p1/np has a simple form that can be integraced.
Use the relation derived to obtain a nonlinear ODE for p1(t). The solution of this ODE cannot be expressed in terms of
elementary functions. To see what it describes, you can solve the non-dimensionalized version of the ODE numerically,
plot In(p1(t)/po) vs time. Show that behavior of the solution at small and large time are very different and obtain the
approximate form numerically for these two regimes. Explain what the two regimes mean biologically. Find and rationalize
the time scale t« separating the two regimes.

[For the more mathematically inclined: show that the increasee of p1(t) at large time is in between logarithmic and linear

dependence.|

Solution

Ifspecies 2 is absent, the equations of the system are:

) 71,0 ;
pr=rinp)pr = g 1 np = Yp1
TR,
Therefore:
d ) r 1 T ns(t)  dn r10K ng(t
7dp1 s 1’071 s = pl(t)—pl(O)_l’O/ ; EB = 10 Iln(l—i-IB(())
ng np v 1+x Y Jnp)=0 1 T &, Y I
Thus:

14 np(t) _ eﬁ[ﬂl(t)—f)o] [p1(t)—po]

Ky

We can therefore rewrite the equation for pg as:

v
= Tl(TLB) =r10€ r1,0Kr

pr = rige om0

We can make this equation non-dimensional by defining:

_am(d) = PO = ot
r1,0K7 r1,0K7 ’

X .

which leads to the non-dimensional equation:
dﬁ — pp—(z—20)
= ze
dr

The plot of the numerical solution of this equation with g = 1 is:

14
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Since p1/po = x/x0, from this plot we can also obtain the plot of In(p1 /po):

20—

1.5+ .

P1
In —
Lo

x
In —
X

In the small time regime In p1 /pg is linear, meaning that species 1 is growing exponentially; this is possible be-
cause the population is still small, and so the abundance of the toxic substrate np is still low. On the other hand,
at large times growth is greatly inhibited (in particular In p1 /pg is logarithmic, which means the population is
growing 1inearly) because species 1 has produced a lot of the toxic substrate n g, which is now slowing down its
own growth.

At small times, & xg so z ~ xpe”. This means that the population is growing exponentially. The exponential

15



factor in the equation “kicks in” when z(tx ) — xo ~ 1. Therefore:
1 rioK
roe™ =141z = ity zln(l—i—) :1n<1—|—1’01>
o YPo
On the other hand, at large times we have 2 > ¢, so we can Taylor expand:

1 1
er~% 14z —x

e—(:c—aco) _

so that the equation of the system becomes:

dzx T

dr x4 (1—x0)

We can separate the variables to obtain:

1—2x9 T
dr=dt |1+ = T7=z—x0+(1—20)ln—
T Lo
However, since x is ]arge we can approximate thisto z = g + 7 (i.e., we can neglect the term involving Inz).
Now, in order to show formally that the increase of @ at large times is between linear and logarithmic we can

do the following. The expression of dx/dT is bounded by these two functions:

dx T
_(33_'730) < — — _('T_m()) < -
o Sar T =2+ (I-w0)

By integrating the lower bound we have:
dx —(z—x0)
e > xpe o = x(t) > 2o+ In(1+ zoT)
T

Whlie from Wi’lat we have ShOWl’l above fOl‘ large times, EOI' th€ upper bound we hﬁVC:

dzx T

- N < +
dr — . + (1 — =) r=roTT

Therefore:
In(l+azo7) <z —20 <7

which can be rewritten as:

K K
1+Wln<1+mt) <P Tk
Ypo Kr £0 YPo

which indeed shows that the increasce of p; is between logarithmic and linear.

(d) Compare your answer to part (a) and (c) to assess the effect of species 2 on species 1. Explain why this effect is so different
from the effect obtained in class for the same system in a chemostat.

Solution

In the presence of species 2 we have seen that py oc €. Therefore, the presence of species 2 gives a large
boost to the fitness of species 1. This happens because as species 1 grows it excretes a substance that is roxic
for itself, but can be uptaken by species 2. Therefore, the presence of species 2 makes it possible to remove the
toxic substrate, allowing species 1 to grow more. This result is very different from the chemostat case because
particulariy when we are close to the washout limit, species 1 will not be able to grow to a high enough density
and produce enough resource B to support the growth of species 2.

16



4. Production and cross—feeding of substitutable nutrients
Consider two species of bacteria with density p1, pa, which generate nutrients n 4 and np, respectively. Take these two
nutrients to be substitutable. Examples could be the polymers chitin and alginate, both of which can be broken down
into monomeric sugars by special (and different) enzymes. The population dynamics of this system in a chemostat can be
described by the following system of ODEs:

p1 = (UlAnA +UanB) “pL— M p1
p2 = (UZAnA + UQBTLB) - p2 — Wb P2
N =Y14p1 — pna — (V1ap1 +v24p2) - A

nB = Y2Bp2 — unp — (ViBp1 + v2pp2) - NB

where V;q are the nutrient uptake matrix introduced before, 1 is the dilution rate, and 1 4, y1B are the two nutrient
production rates. The yield factor has been set to unity for simplification.

(a) In the limic of small pu, show that steady state solution would have n}, o< pt and p} o MQ.

Solution
Considering the equations for the populations, at steady state we have:
* *
V1AM 4 + U1BNg = W N (UlA U13> <nj‘4> _ (,u) N
voAnY + vopnly = p vo4 v2B) \Np i

(") 1 p(v2B — v1B)
ng)  viAvap — vipvaa \M(V14 — V24)
and so indeed 1}, o< 1. From the equation for the resources, on the other hand:

Y14p7 — Uy — (v1ap] + vaaps)ny
Y1Bp] — knp — (vipp] + vapp3)ng

_ (ma—vany —veang\ (pT) _ (MG
V1B —ViBNp —v2Bny /) \p3 unp

=0
=0

N P\ 1 —U2BN VAN pun’y
J2 (v1Av2B — V1BV2A)NH NG + VaaY1BNY — VapY1ATY \V1BNE — V1B V1A — v1AN}, ) \unjp

N <p>{) _ 1 ( (v24 — vap)pnyny >
J2 (v1.4V2B — VIBV2A)NA NS 4+ voayiBNY — VapYianfy \ (VBN — V1A + Y14 — V1B)HN YN
Now, since 1 X 1t we have:

2
(VIAV2B — V1BV2A)NYNE + V2AYIBN Y — V2BY1ANE X aft” + b
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(b)

(c)

(v2a — vap)pniyny o< e’
(vipng — viant + 114 — NB)uning o dupt + ep?
In the limit of small 4, this expressions can be approximated as:
(V1AV2B — VIBV24)ANE + V24Y1BNA — V2BY1ATNE ~ bl
(voa — vap)uniyny ~ cu®

3
(viBnp — v1ANy + 714 — V1B)UNANE ~ efL

* 1 C,U,3 .
(-2 () = 5

By setting o, = 0, solve for the steady state condition % (p1, p2) and 0 (p1, p2). Find the leading order dependence
on p1 and p2 in the limit of small 1. Substitute these expression into the ODEs for p1 and pa to obtain two nonlinear

Therefore:

ODE;s involving only p1 and pa to the leading order for small .

Solution
From g = 0 and ng = 0 (i.e., we assume that the time evolution of the resources is fast) we have:

y14p1 — pny — (v1ap1 + vaap2)nly =0 mpp1 — pnp — (vipp1 + vapp2)np =0

which yields:

* Y14P1 * 7BP1
Ny = np =
K+ v1Ap1 + V2402 p+vipp1 + vapp2
and by substituting this in the equations for p; we get:
V1AMA V1B71B

p1 = p1 —
pwHv14p1 +v24p2 A+ vipp1 + V2BP2

In the limit of small g, since p; &< pu? we can approximate:

n' — T1AP1 - Mpl nt — Y1BP1 - 7173101
A B+ v14p1 + V24P2 iz B K+ vipp1 + v2Bp2 jz
and so we can write:
. V1AY1A V1BV1B . V2AV1A V2BY1B
Plﬁpl( " p1+ m Pz-#) PzﬁP2< 7 p1+ " P2—H>

Plot the null-clines and sketch the phase flow of the ODEs obtained in part (b) for i) v14 > v24 and vap > v1B, and ii)
v14 < V24 and vap < V1. Describe the dynamics of the system in words for each regime, in particular, the dependence
on initial densities p1(0) and p2(0).

Solution
The nullclines are the two lines given by:
V1ATY1A V1BY1B V2A7Y1A V2B7Y1B

prL+———p2=[ p1+ p2=p
I I 0
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which can be represented as follows:

V14 < V24, V2B < V1B

2
I
V2B7Y2B

2
o
V1B72B

P2

p? 1

P1

2

V2A71A V1ATY1A

V1A > V24, V2B > VIB

P2

2

V1B72B

p?
V2B7Y2B

P1
u? 112

V1A71A V2A71A

The phase flow of the system for y14 = y2p = gt = 1 is the following;

1.0

0.8

0.6

P2

0.4+

0.2

0.0F

P2

1.0}
o.s:—
06l
04

0.2F

0.0F

P1

V14 = V2B = 1, V24 = V1B = 2

where we are also representing the nullclines.
In both cases, depending on the initial condition (p1(0), p2(0)) the system can either end up in (0, 0) (i.e., both

P1

V1A = V2B = 2, V24 = V1B =1

species go to extinction) or go towards (00, 00) (i.e., both species grow without limit). In this latter case, the

ratio of the two populations remains constant (the flow is well approximated by lines in the (p1, p2) space in

this case), and the value of the ratio depends on the initial condition.

(d) Investigate the growth phase at high densities (the runaway part of (c)) by assuming the nutrients have reached constant

concentrations of values ny and n’, while the two species grow exponentially with rates A1 and Ao. Find the values of n

and 0 for i) A1 > Ag and ii) A1 < Xa. Relate the resulting dynamics to the simple producer-cheater relation discussed

in class and use the results derived in class to describe the parameter regime where species 1 dominates, species 2 dominates,
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(e)

or when cither species can dominate. In the last case, what is species dominance determined by?

Solution

From the assignment, when ng = n% and np = n}j; we have p; eMt withi = 1,2, If \; > Ao, in the
long time limit we have p1 > p2. From the equations of the system, we see that this leads to ng < 0 because
the uptake term —v1 gnpp; is going to be much larger than the production rate y2pp2. Therefore, in the large
time limit n; — 0; if we now set 724 = 0 we have:

T1A
VIAPL = VIANPL = Ny = ——
V1A

In this case, therefore, since resource B is Completely removed from the system by species 1, species 2 is behaving
as a cheater because it grows on resource A, which is being produced by species 1. This situation is stable (i.e.,
species 1 will dominate) if v14 > v24 (i.c., if species 1 uptakes the only available resource faster than species 2).

The case A1 < Ag is equivalent to the previous one, provided we substitute species 1+ species 2 and resource
A <> resource B. In particular, when A1 < Ag we will have n% = 0 and n}; = y2p/v2p. This time it’s species
1 that is behaving as a cheater, and species 2 dominates if vop > v1B.

When v14 < v94 or vag < vgp cither species can dominate. In particular the system is bistable, and species
dominance is determined by the initial conditions.

Continuing the investigation above, we next study the case A1 = Aa (and refer to both as A). Find n% and n’; in chis
case and the growth rate X in terms of the model parameters. [To simplify the algebra, you may take v14 = vap = v,
voa = v1p =V, and y14 = 1B = .| To see whether the fixed point solution obtained here is stable, apply Tilman’s
analysis in the space of (na,np) for the two parameter regimes discussed in (c): i) v14 > vaa and vap > v1B, and ii)
V14 < Ugg and vag < V1B.

Solution
Since A\; = A2 = A, we can write 73(n’y, nj;) = r*. Therefore, by definition we have:
viAny +vigng =1" voAn’y + vopnp = 1"

which is a system of two equations in two variables. The solution of this system is:

*
V14 V1B n _ r* N nh _ r V9B — V1B
vo4 v2B) \Njp r ngp V1AV2B — V1BU24 \V1A — V24

As suggested, we simpli y the a]gebra by setting v14 = V2B =V and v94 = v1g = v/, which yields:

(nz> N g (U _UI> B (U:vl>
Il B 72 _ )
np v?— (V)2 \v—v PR

,r*
v+

We now have to express 7* in terms of the model parameters. We can do so by using the equations for ny at

Therefore:

ny =npg=

steady state:
* * * * * * * * * >k
V1AP] = V1AM APT + V24T 4P V2BP2 = V1BNpBP| + V2BNRPs
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We can rearrange these equations as:
(V14 — v1ATY)pT = v2ANYP5 (V2B — v2Bnp)p3 = viBNBP]
By multiplying each sides of these equations, we get:
(V14 — v1an7) (2B — v2BNE) = V2ANVIBNE
If we now introduce the algebraic simplifications (including 14 = 728 = ) this becomes:
(y —on}y)(y —onj) = (v')*ning

and by also plugging in the expression of n% and n};:

r* 2 , 2
—v = (v
" v+ v v+ v

By taking the square root on both sides, and considering only the positive root:

* * /
T ;T N )

v ;=
v+v

7T _Uv—l—v’ = v—i—v’:7 - =7

Therefore, A = r* = ~.
For Tilman’s graphical analysis, we can rewrite the equations for M as:

NA\ _ &« [MA —v1ANA % —V2ANA
o=, +p2 _
np U1BNB 2B — V2BNB

-~ -~

T T

where we are neglecting the terms proportional to f, since we are in the slow dilution rate.
Graphically, the situation in the two cases is the fOHowing:

V14 < V24, V2B < V1B V1A > V24, V2B > V1B
npg np
2 i
V2B V1B
1 /)1 > ()/)_) <0 m /)1 <0, /.)2 >0
V1B U2
p1<0,p2>0 p1>0,p2 <0
nNA na
o ® e Iz
V2 A V1A V1A U2A

Therefore, when v14 < v24 and vap < v1p an increasee in py resules in p1 < 0, and similarly an increasee in
p2 yields po < 0: the system is stable. On the other hand, when v14 > v24 and vap > v1B an increasee in p;
leads to p; > 0: the system is unstable.
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() Summarize your findings in parts (d) and (e) by indicating the phase diagram in the space of (v1.4/v24,v2B/v1B). Com-
pare your result to the conditions derived in class for the case of essential nutrients. Discuss the differences between the two

cases.
Solution
The phase diagram is:
V2B
V1B

species 1 cheats bistability
(basin of attraction
depends on y14 /72B)

cooperative growth| species 2 cheats

With respect to the conditions derived for the case of essential nutrients, the “quadrants” of bistability and
cooperative growth are switched. In other words, in the case of essential nutrients the species coexist when
V14 > v24 and vap > V1B, while either of the two species will dominate when v14 < va4 and vap < v1B.
This difference arises from the different effect that a low resource has on population growth: when the resources
are substitutable, if one of them runs low each species can grow by uptaking the other, while if both resources are
essential then both species will slow down if either of the two resources is scarce. Therefore, when resources are
essential having two species that uptake faster their “own” resource (i.c., the resource that they are producing)
has a stabilizing effect, because if either of the two populations becomes 1arger both of them will be slowed
down by the decreased availability of resources. On the other hand, with substitutable resource this situation is
de-stabilizing because in this case if each species uptakes faster its “own” resource any increasee in p; will have
a positive effect on species 7 but not on the other. Conversely, when resources are substitutable having species 1
that uptakes faster the resource made by species 2 and viceversa has a stabilizing effect because any increasee in
pi will have a positive effect on the other species, bringing the system back to equilibrium.
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