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1. Coexistence of 3 species on two nutrients
Consider the following Consumer-Resource model for 3 species (of densities ρi, i ∈ {1, 2, 3}) and 2 substitutable nutrients
(of concentrations nα, α ∈ {A,B}).

ρ̇i = (viAnA + viBnB) · ρi − µ · ρi

ṅα = µ · (n0α − nα)− (v1αρ1 + v2αρ2 + v3αρ3) · nα/Yα
Previously, we worked out that if there are two species with nutrientA preferred by species 1 and nutrientB preferred by
species 2 (i.e. , if v1A > v2A and v2B > v1B), then coexistence of species 1 and 2 are expected for some range of the nutrient
influx specified by (n0A, n

0
B). In this problem, you are asked to work out what happens when a 3rd species is introduced.

For simplicity, let this species have intermediate nutrient preference, i.e. , v1A > v3A > v2A and v2B > v3B > v1B , so
that A is still most rapidly taken up by species 1 and B is by species 2.

(a) By setting d
dtρi = 0 and demanding the steady state density ρ∗i > 0 for all 3 species, obtain three conditions on the

steady-state nutrient concentrations (n∗A, n
∗
B). Sketch these three conditions in the (nA, nB) plane and show that there

is generically no way to satisfy all three conditions simultaneously for arbitrary values of the nutrient uptake coe�cients
viα. Consequently, one of the density must be at zero in steady state.

Solution
If we set d

dtρi = 0, assuming ρ∗i 6= 0 we get:

µ = viAnA + viBnB

which is an equation for a line:
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nA

nB

µ
viB

µ
viA

In order for the three species to coexist, we need three lines like this to intersect in one point. However, if the
uptake coe�cients viα have arbitrary values this never happens:

nA

nB

µ
v3B

µ
v3A

µ
v2B

µ
v2A

µ
v1B

µ
v1A

The intersections of these lines are three alternative steady states where only two species coexist.

(b) Write down the three conditions if the nutrient uptake coe�cients are of the special form motivated in class, viα = v0α ·ηiα,
where ηiα describes the allocation of uptake enzymes for nutrient α by species i with ηiA+ηiB = 1 for each i. [Convince
yourself that the nutrient preferences v1A > v3A > v2A and v2B > v3B > v1B implies that η1A > η3A > η2A.]
Show that there is a special pair of nutrient conditions (n∗A, n

∗
B) for which all three conditions are satisfied, hence all 3

species can coexist. Plot the three conditions in the (nA, nB) plane and show for yourself geometrically how this becomes
possible. Show that if a 4th species is introduced with v4α = v0αη4α and η4A + η4B = 1, the same solution (n∗A, n

∗
B)

still holds (and hence the 4th species can also coexist).
Solution
If viα = v0α · ηiα, then the three conditions become:

µ = v0AηiAn
∗
A + v0BηiBn

∗
B i ∈ {1, 2, 3}

Since ηiA + ηiB = 1, these three equations can be solved if:

n∗A =
µ

v0A
n∗B =

µ

v0B

In fact, if we use these expressions in the above expression we get:

v0AηiAn
∗
A + v0BηiBn

∗
B = v0AηiA

µ

v0A
+ v0BηiB

µ

v0B
= µ(ηiA + ηiB) = µ
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which therefore solves the equation. Therefore, this time the three lines plotted above do intersect in a single
point. Since v1A > v3A > v2A and v2B > v3B > v1B , the situation is the following:

nA

nB

µ
v1B

µ
v1A

µ
v2B

µ
v2A

µ
v3B

µ
v3A

n∗B

n∗A

If we introduce a 4th species, the equations we have to solve now are:
µ = v0Aη1An

∗
A + v0Bη1Bn

∗
B

µ = v0Aη2An
∗
A + v0Bη2Bn

∗
B

µ = v0Aη3An
∗
A + v0Bη3Bn

∗
B

µ = v0Aη4An
∗
A + v0Bη4Bn

∗
B

However, similarly to what was shown above, thanks to the fact that ηiA + ηiB = 1 this system still has
(n∗A, n

∗
B) = (µ/v0A, µ/v

0
B) as a solution1. Therefore, the 4th species will coexist with the other three. Graphi-

cally speaking, there will be an additional line in the plot above that passes through the same (n∗A, n
∗
B) point.

(c) From here on, we also take the slow dilution limit, µ� v0αn
0
α, to focus on inter-species competition. Let fractional species

abundance be ψi ≡ ρ∗i /(ρ
∗
1 + ρ∗2 + ρ∗3) and let the fraction of nutrient influx be fα ≡ n0αYα/(n

0
AYA + n0BYB).

Show that in steady state, the abundances satisfy the condition

fA = η1Aψ1 + η2Aψ2 + η3Aψ3

Plot the above condition as a plane in the space (ψ1, ψ2, ψ3) for fA = 0.5 and (η1A, η2A, η3A) = (0.75, 0.25, 0.5).
Plot in the same space also the condition ψ1 + ψ2 + ψ3 = 1 which follows from the definition of fractional abundance.
Show that the two planes intersect to form a line with ψ1 > 0. This line describes the possible abundance range for the
coexisting species. Find the range of ψ1 where all 3 species are present, and plot ψ2, ψ3 vs ψ1 within this range. Comment
on the degeneracy of the solutions.
Solution
Let’s take the equation for nutrient α at steady state:

ṅα = 0 ⇒ µ(n0α − n∗α) =
n∗α
Yα
v0α(η1αρ

∗
1 + η2αρ

∗
2 + η3αρ

∗
3)

If we substitute n∗α = µ/v0α we get:

µn0α −
µ2

v0α
=

µ

v0αYα
v0α(η1αρ

∗
1 + η2αρ

∗
2 + η3αρ

∗
3) ⇒ n0αYα = (η1αρ

∗
1 + η2αρ

∗
2 + η3αρ

∗
3) (1)

1Notice that when we plugged n∗A and n∗B in the computation shown above, the result is true for any species i. Therefore, as long
as ηiA + ηiB = 1 for all species, we can add as many species as we want and they will all coexist.
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where we have also neglected the term proportional to µ2, since we are in the slow dilution limit. If we now
substitute ψi = ρ∗i /(ρ

∗
1 + ρ∗2 + ρ∗3), we get:

n0αYα = (η1αψ1 + η2αψ2 + η3αψ3) · (ρ∗1 + ρ∗2 + ρ∗3) (2)

From Eq (1) we can determine the value of ρ∗1 + ρ∗2 + ρ∗3:{
n0AYA = η1Aρ

∗
1 + η2Aρ

∗
2 + η3Aρ

∗
3

n0BYB = η1Bρ
∗
1 + η2Bρ

∗
2 + η3Bρ

∗
3

⇒ we sum the equations ⇒

⇒ n0AYA + n0BYB = (η1A + η1B)︸ ︷︷ ︸
=1

ρ∗1 + (η2A + η2B)︸ ︷︷ ︸
=1

ρ∗2 + (η3A + η3B)︸ ︷︷ ︸
=1

ρ∗3 ⇒

⇒ ρ∗1 + ρ∗2 + ρ∗3 = n0AYA + n0BYB

Therefore, using this in Eq. (2):

n0αYα
n0AYA + n0BYB

= fα = η1αψ1 + η2αψ2 + η3αψ3

In particular, for resource A we have:

fA = η1Aψ1 + η2Aψ2 + η3Aψ3

The plot of the plane and the condition ψ1 + ψ2 + ψ3 = 1 is the following:

We can see from the plots that the line where the two surfaces intersect lies in the part of the space whereψ1 ≥ 0.
In order to find the range of ψ1 where all species coexist and in order to plot ψ2 and ψ3 vs ψ1, it is convenient
to write the parametric equation of the line (i.e., the intersection of the two planes). In order to do this, we can
treat ψ1 as a “free parameter”2 and solve:{

fA = η1Aψ1 + η2Aψ2 + η3Aψ3

ψ1 + ψ2 + ψ3 = 1

2This is the general strategy to find the parametric equation of a line in three dimensions: you treat one of the variables as a parameter
and solve the equations of the intersecting planes.
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(which is now a system of two equations in two unknowns, since we are treating ψ1 as a parameter). We obtain:

ψ2 =
fA − η3A + (η3A − η1A)ψ1

η2A − η3A
ψ3 =

−(fA − η2A) + (η1A − η2A)t
η2A − η3A

If we plug in the numbers provided in the text, we get:

ψ2 = ψ1 ψ3 = 1− 2ψ1

Therefore, the range of ψ1 where all three species are present will be given by:{
ψ2 > 0

ψ3 > 0
⇒

{
ψ1 > 0

ψ1 <
1
2

Therefore, the range of ψ1 where all species coexist is3 0 < ψ1 < 1/2. The plots of ψ2 and ψ3 vs ψ1 will
therefore be:

ψ1

ψ2

1
2

1
2

ψ1

ψ3

1

1
2

In this case we have a continuous space of possible steady-state points (the line given by the intersection of the
planes as shown above). In other words, there are infinitely many possible steady states, each one with di�erent
fractional species abundances (ψ1, ψ2, ψ3).

(d) Show that the 3 species can coexist as long as η2A < fA < η3A (for η3A also falling in between η1A and η2A). For
(η1A, η2A, η3A) = (0.75, 0.25, 0.5), plot the ecological landscape, e.g., for each value of fA, the range of ψ1 where all
3 species can coexist. [This should be as an area in the (fA, ψ1) space.]
Solution
We can show that the three species coexist when η2A < fA < η3A by plotting the two planes for di�erent
values of fA. For example, when fA < η2A we have:

3Notice that this is also a mathematical way to show that the line where the two planes intersect has ψ1 > 0
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fA < η2A

ψ1

ψ2

ψ3

1

1

1

ψ1 + ψ2 + ψ3 = 1

fA/η3A

fA/η1A
fA/η2A

fA = η1Aψ1 + η2Aψ2 + η3Aψ3

where we have taken into account that, since η1A > η3A > η2A, we have fA
η2A

> fA
η3A

> fA
η1A

. Therefore, since
the two planes don’t intersect in this case, the three species will not be able to coexist.
When η2A = fA < η3A we have:

η2A = fA < η3A

ψ1

ψ2

ψ3

Since now fA/η2A = 1, the two planes intersect in one point where all three species coexist.
If we now consider η2A < fA < η3A:
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η2A < fA < η3A

ψ1

ψ2

ψ3

Now fA/η2A > 1 and the two planes intersect in a line. Therefore, the three species can coexist.

If we now use (η1A, η2A, η3A) = (0.75, 0.25, 0.5), the ecological landscape is:

fA

ψ1

0.25 0.5 0.75
0

1

(e) Repeat the above plot in the space of (fA, ψ3). For what environmental parameter (fA) can you expect the abundance of
the “intermediate species” (species 3 in this case) be maximal? What happens to the other two species in this case? Contrast
this with the dominance conditions for the two “key-stone species” (species 1 and 2). [It may be useful to repeat the plots of
part (c) for fA at selected special values.]

Solution
The plots for ψ2 and ψ3 are:
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fA0

ψ2

0.25 0.5 0.75

1

fA

ψ3

0.25 0.5 0.75

1

0

Therefore, the value of fA for which ψ3 is maximal is fA = 0.5 = η3A. From the three ecological plots we see
that each species’ population is maximized when fA = ηiA: the population of a species is maximized when the
nutrient influx matches the species’ uptake.

Finally, when ψ3 is maximixed (i.e., fA = η3A = 0.5), as we can see from the ecological phase diagram we can
have ψ3 = 1 but it is not the only choice (the whole line that goes from ψ3 = 0 to ψ3 = 1 at fA = 0.5 is
part of the phase diagram). On the other hand, when either ψ1 or ψ2 is maximized, the only possibilities are
ψ1 = 1 and ψ2 = 1, respectively. In other words, when fA is such that either of the two “keystone species” is
maximized (i.e., fA = η1A or fA = η2A) the other two are extinct, but when fA = η3A we can still have all
three species coexisting.

2. Ecological phase diagram for 3 nutrients
Consider the Consumer-Resource model for 3 species (of densities ρ1, ρ2, ρ3) and 3 substitutable nutrients (of concentrations
nA, nB , nC ):

ρ̇i = (viAnA + viBnB + viCnC) · ρi − µ · ρi
ṅα = µ · (n0α − nα)− (v1αρ1 + v2αρ2 + v3αρ3) · nα/Yα

Let the nutrient uptake coe�cients be of the special form viα = v0α · ηiα where
∑

α ηiα = 1. Let us also take the slow
dilution limit, µ� v0αn

0
α, to focus on inter-species competition.

(a) Write down the conditions on ρi obtained from the steady-state conditions ṅα = 0. Add up these equations to recover the
constraint on mass conservation. Express these 3 conditions in terms of the fractional species abundance ψi ≡ ρi/

∑
j ρj ,

and the fractional nutrient influx, fα ≡ n0αYα/
∑

β n
0
βYβ .

Solution
From ṅα = 0 we get:

µn0α − µn∗α =
n∗α
Yα

(v1αρ
∗
1 + v2αρ

∗
2 + v3αρ

∗
3)

Similarly to what has been done above, we can substitute n∗α = µ/v0α (which is still a solution for the system)
and neglect the quadratic term in µ to obtain:

n0αYα = η1αρ
∗
1 + η2αρ

∗
2 + η3αρ

∗
3
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If we sum these three expressions for α = A,B,C and use ηiA + ηiB + ηiC = 1, we get:

ρ∗1 + ρ∗2 + ρ∗3 = n0AYA + n0BYB + n0CYC

If we now substitute ψi in the above equation and use the constraint on mass conservation, we get:

n0αYα = (η1αψ1 + η2αψ2 + η3αψ3) · (ρ∗1 + ρ∗2 + ρ∗3)

and therefore:
n0αYα

n0AYA + n0BYB + n0CYC
= fα = η1αψ1 + η2αψ2 + η3αψ3

(b) Use ψ3 = 1−ψ1−ψ2 to reduce the 3 equations in (a) to two equations for ψ1 and ψ2. Solve the two linear equations to
obtain expressions for ψ1 and ψ2. From the conditions ψ1 ≥ 0 and ψ2 ≥ 0, obtain two constraints involving fα − η3α
and ηiα − η3α.

Solution
The three equations are:

fA = η1Aψ1 + η2Aψ2 + η3Aψ3

fB = η1Bψ1 + η2Bψ2 + η3Bψ3

fC = η1Cψ1 + η2Cψ2 + η3Cψ3

We can for example substitute ψ3 = 1− ψ1 − ψ2 in the first two equations to get:

(η1A − η3A)ψ1 + (η2A − η3A)ψ2 = fA − η3A

(η1B − η3B)ψ1 + (η2B − η3B)ψ2 = fB − η3B
Which can also be written in matrix form:(

η1A − η3A η2A − η3A
η1B − η3B η2B − η3B

)
︸ ︷︷ ︸

:=M

(
ψ1

ψ2

)
=

(
fA − η3A
fB − η3B

)

The solution of this equation is given by:(
ψ1

ψ2

)
=

1

detM

(
(η2B − η3B)(fA − η3A)− (η2A − η3A)(fB − η3B)
−(η1B − η3B)(fA − η3A) + (η1A − η3A)(fB − η3B)

)
If we now assume4 detM > 0 , from ψ1 ≥ 0 we get:

(η2B − η3B)(fA − η3A) ≥ (η2A − η3A)(fB − η3B) ⇒ fB − η3B
fA − η3A

≤ η2B − η3B
η2A − η3A

On the other hand, ψ2 ≥ 0 yields:

(η1A − η3A)(fB − η3B) ≥ (η1B − η3B)(fA − η3A) ⇒ fB − η3B
fA − η3A

≥ η1B − η3B
η1A − η3A

4This corresponds to assuming that:
η1A − η3A
η2A − η3A

>
η1B − η3B
η2B − η3B

As shown below, this assumption has some consequences in part (d).
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(c) Apply the condition ψ1 + ψ2 ≤ 1 (from ψ3 ≥ 0) to obtain a 3rd constraint on the parameters.

Solution
If we set ψ1 + ψ2 ≤ 1, we get:

(η2B−η3B)(fA−η3A)−(η2A−η3A)(fB−η3B)−(η1B−η3B)(fA−η3A)+(η1A−η3A)(fB−η3B) ≤ detM =

= (η1A − η3A)(η2B − η3B)− (η1B − η3B)(η2A − η3A)

which can be simplified to:
fB − η1B
fA − η1A

≤ η2B − η1B
η2A − η1A

(d) Show the constraints obtained in (b) and (c) have a simple geometric representation in the (fA, fB) space. [Hint: The 3
points (ηiA, ηiB) form a triangle. Take (η3A, η3B) as the origin and plot the 3 lines of the 3 constraints from above.] For
each of the 7 regions partitioned by the lines, indicate the phase of the region, e.g., ψ1 = 0, ψ2 > 0, ψ3 > 0.

Solution
The constraints obtained in (b) and (c) can all be represented as lines in the (fA, fB) space. The representation
of the constraints is the following:

fA

fB

ψ1, ψ2, ψ3 > 0

ψ2 = 1

ψ1 = 0

ψ3 = 1

ψ2 = 0

ψ1 = 1

ψ3 = 0

1

1

η3B

η3A

η1B

η1A

η2B

η2A
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Notice that this plot is in agreement with the assumption

detM > 0 ⇒ η1A − η3A
η2A − η3A

>
η1B − η3B
η2B − η3B

that we have introduced before. In fact, this assumption can be rewritten as:

η1B − η3B
η1A − η3A

<
η2B − η3B
η2A − η3A

which means that the slope of the blue line in the plot above is smaller than the slope of the orange line.

(e) For the more mathematically oriented: Add a 4th species, characterized by v4α = v0α · η4α, to the community with 3
nutrients. Show that ρ̇i/ρi = 0 still holds with ρi > 0 for i ∈ {1, 2, 3, 4}. Repeat the analysis in (a) through (c) to
obtain modified conditions onψ1 andψ2. Explain that if the representation of η4α in the (fA, fB) space is a point located
in the interior of the triangle defined by the 3 vertices (η1A, η1B), (η2A, η2B), (η3A, η3B), then feasibility conditions
for coexistence obtained above are unchanged with ψ4 > 0.

Solution
For i ∈ {1, 2, 3, 4} we can write:

ρ̇i
ρi

= viAnA + viBnB + viCnC − µ

and therefore at steady state we have:

ρ̇i
ρ∗i

= viAn
∗
A + viBn

∗
B + viCn

∗
C − µ

if we substitute n∗α = µ/v0α and viα = v0αηiα:

ρ̇i
ρ∗i

= v0AηiA
µ

v0A
+ v0BηiB

µ

v0B
+ v0CηiC

µ

v0C
− µ = µ(ηiA + ηiB + ηiC − 1) = 0 (3)

Furthermore, from ṅα = 0 we have:

η1αψ1 + η2αψ2 + η3αψ3 + η4αψ4 = fα

and plugging in ψ3 = 1− ψ1 − ψ2 − ψ3:

(η1A − η3A)ψ1 + (η2A − η3A)ψ2 + (η4A − η3A)ψ4 = fA − η3A

(η1B − η3B)ψ1 + (η2B − η3B)ψ2 + (η4B − η3B)ψ4 = fB − η3B
This is equivalent to “shifting” fA and fB in the conditions found above to:

f ′A = fA − (η4A − η3A)ψ4 f ′B = fB − (η4B − η3B)ψ4

so the results found above (including the feasibility conditions) are still valid with fα → f ′α.
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3. Mutualistic interaction in the batch culture
In class, we consider the problem where a species (1) of bacteria consumes a substance A and excretes a substance B, with
B being toxic to the excreting species but taken up as nutrient for growth by another species (2). Consider the case where
species 1 and 2 are placed in a “batch culture” (e.g., a flask) where the substanceA is provided in saturating concentration,
and there is no dilution. Assume that the flask is very large so you don’t have to worry about cells getting too dense. Let
ρ1, ρ2 denote the density of the two species and nB denote the concentration of substance B. Let the replication rate of
the two species be r1(nB) = r1,0/(1 + nB/KI) and r2 = r2,0nB/(nB +KB) where r1,0 and r2,0 are the growth
rates of the two species under saturating nutrient,KI is the half-inhibitory concentration, andKB is the Monod constant
for species 2 to grow on B. Finally, B is excreted by species 1 at rate γ per cell and the yield of species 2 growing on B is
YB .

(a) Find the growth rate λ where the two species grow at the same rate. Find the nutrient concentration n∗B at this steady
state, and find the ratio of the two species.

Solution
The equations of the system are the following:

ρ̇1 = r1(nB)ρ1 ρ̇2 = r2(nB)ρ2 ṅB = γρ1 − r2(nB)
ρ2
YB

When the two species grow at the same rate we have r1(n∗B) = r2(n
∗
B), i.e.:

r1,0

1 +
n∗B
KI

= r2,0
n∗B

n∗B +KB
⇒ r2,0

KI
(n∗B)

2 + (r2,0 − r1,0)n∗B − r1,0KB = 0

and the only acceptable (i.e., positive) solution of this quadratic equation is:

n∗B =
KI

2r2,0

[
r1,0 − r2,0 +

√
(r2,0 − r1,0)2 + 4r1,0r2,0

KB

KI

]

Therefore, the growth rate at which both species are growing at the same rate is:

λ = r1(n
∗
B) = · · · =

2r1,0r2,0

r1,0 + r2,0 +
√
(r1,0 + r2,0)2 + 4r1,0r2,0

KB
KI

or alternatively:

λ = r2(n
∗
B) = · · · =

KI

2(KB −KI)

[
−(r1,0 + r2,0) +

√
(r1,0 − r2,0)2 + 4r1,0r2,0

KB

KI

]
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These two expressions are equivalent. In fact, if we call S := (r1,0 − r2,0)2 + 4r1,0r2,0
KB
KI

we have:

r1(n
∗
B) = r2(n

∗
B) ⇒ 2r1,0r2,0

r1,0 + r2,0 +
√
S

=
KI

2(KB −KI)

[
−(r1,0 + r2,0) +

√
S
]
⇒

⇒ 2r1,0r2,0 · 2(KB −KI) = KI

(
r1,0 + r2,0 +

√
S
)(
−r1,0 − r2,0 +

√
S
)
⇒

⇒ 4r1,0r2,0(KB −KI) = KI

[
−(r1,0 + r2,0)

2 + S
]
=

= KI

[
−(r1,0 + r2,0)

2 + (r1,0 − r2,0)2 + 4r1,0r2,0
KB

KI

]
=

= KI

(
−4r1,0r2,0 + 4r1,0r2,0

KB

KI

)
=

= KI · 4r1,0r2,0
(
KB

KI
− 1

)
= 4r1,0r2,0(KB −KI)

and so 4r1,0r2,0(KB−KI) = 4r1,0r2,0(KB−KI) ⇒ 1 = 1, which means the equation r1(n∗B) = r2(n
∗
B)

is solved. Graphically, the situation is the following:

nB

r1, r2

r1(nB)

r1,0

r2,0 r2(nB)

λ

n∗B

To find the ratio of the two species at steady state, we can plug λ = r2(n
∗
B) into ṅB = 0:

γρ∗1 = λ
ρ∗2
YB

⇒ ρ∗2
ρ∗1

=
γYB
λ

(4)

(b) Show that this steady state is stable by considering what happens if the nutrient concentration is transiently di�erent from
n∗B .

Solution
If nB & n∗B we have r2(nB) & r1(nB) and therefore ρ2 > ρ1. This, however, means that ṅB < 0, which
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means that the nutrient concentration goes back down towards n∗B .
On the other hand, if nB . n∗B , r2(nB) . r1(nB) and so ρ2 < ρ1 and ṅB > 0, which means the resource
concentration goes back up towards n∗B . Therefore, however we perturb the resource concentration it will go
back to n∗B , which is therefore stable.

(c) Next consider the case where species 2 is absent. Let the starting density be ρ1(0) = ρ0 at time t = 0. Derive a
relation between ρ1(t) and nB(t) by observing that dρ1/dnB = ρ̇1/ṅB has a simple form that can be integrated.
Use the relation derived to obtain a nonlinear ODE for ρ1(t). The solution of this ODE cannot be expressed in terms of
elementary functions. To see what it describes, you can solve the non-dimensionalized version of the ODE numerically,
plot ln(ρ1(t)/ρ0) vs time. Show that behavior of the solution at small and large time are very di�erent and obtain the
approximate form numerically for these two regimes. Explain what the two regimes mean biologically. Find and rationalize
the time scale t× separating the two regimes.
[For the more mathematically inclined: show that the increasee of ρ1(t) at large time is in between logarithmic and linear
dependence.]

Solution
If species 2 is absent, the equations of the system are:

ρ̇1 = r1(nB)ρ1 =
r1,0

1 + nB
KI

ρ1 ṅB = γρ1

Therefore:

dρ1
dnB

=
ρ̇1
ṅB

=
r1,0
γ

1

1 + nB
KI

⇒ ρ1(t)− ρ1(0) =
r1,0
γ

∫ nB(t)

nB(0)=0

dnB
1 + nB

KI

=
r1,0KI

γ
ln

(
1 +

nB(t)

KI

)
Thus:

1 +
nB(t)

KI
= e

γ
r1,0KI

[ρ1(t)−ρ0] ⇒ r1(nB) = r1,0e
− γ
r1,0KI

[ρ1(t)−ρ0]

We can therefore rewrite the equation for ρ̇1 as:

ρ̇1 = r1,0e
− γ
r1,0KI

[ρ1(t)−ρ0] · ρ1

We can make this equation non-dimensional by defining:

x :=
γρ1(t)

r1,0KI
x0 :=

γρ0
r1,0KI

τ = r1,0t

which leads to the non-dimensional equation:

dx

dτ
= xe−(x−x0)

The plot of the numerical solution of this equation with x0 = 1 is:
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Since ρ1/ρ0 = x/x0, from this plot we can also obtain the plot of ln(ρ1/ρ0):
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In the small time regime ln ρ1/ρ0 is linear, meaning that species 1 is growing exponentially; this is possible be-
cause the population is still small, and so the abundance of the toxic substrate nB is still low. On the other hand,
at large times growth is greatly inhibited (in particular ln ρ1/ρ0 is logarithmic, which means the population is
growing linearly) because species 1 has produced a lot of the toxic substrate nB , which is now slowing down its
own growth.

At small times, x ≈ x0 so x ∼ x0eτ . This means that the population is growing exponentially. The exponential
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factor in the equation “kicks in” when x(t×)− x0 ≈ 1. Therefore:

x0e
t× = 1 + x0 ⇒ t× = ln

(
1 +

1

x0

)
= ln

(
1 +

r1,0KI

γρ0

)
On the other hand, at large times we have x� x0, so we can Taylor expand:

e−(x−x0) =
1

ex−x0
∼ 1

1 + x− x0
so that the equation of the system becomes:

dx

dτ
=

x

x+ (1− x0)
We can separate the variables to obtain:

dτ = dt

(
1 +

1− x0
x

)
⇒ τ = x− x0 + (1− x0) ln

x

x0

However, since x is large we can approximate this to x = x0 + τ (i.e., we can neglect the term involving lnx).
Now, in order to show formally that the increase of x at large times is between linear and logarithmic we can
do the following. The expression of dx/dτ is bounded by these two functions:

x0e
−(x−x0) ≤ dx

dτ
= xe−(x−x0) ≤ x

x+ (1− x0)
By integrating the lower bound we have:

dx

dτ
≥ x0e−(x−x0) ⇒ x(t) ≥ x0 + ln(1 + x0τ)

While from what we have shown above for large times, for the upper bound we have:

dx

dτ
≤ x

x+ (1− x0)
⇒ x ≤ x0 + τ

Therefore:
ln(1 + x0τ) ≤ x− x0 ≤ τ

which can be rewritten as:

1 +
r1,0KI

γρ0
ln

(
1 +

γρ0
KI

t

)
≤ ρ1
ρ0
≤ 1 +

r1,0KI

γρ0
t

which indeed shows that the increasee of ρ1 is between logarithmic and linear.
(d) Compare your answer to part (a) and (c) to assess the e�ect of species 2 on species 1. Explain why this e�ect is so di�erent

from the e�ect obtained in class for the same system in a chemostat.

Solution
In the presence of species 2 we have seen that ρ1 ∝ eλt. Therefore, the presence of species 2 gives a large
boost to the fitness of species 1. This happens because as species 1 grows it excretes a substance that is toxic
for itself, but can be uptaken by species 2. Therefore, the presence of species 2 makes it possible to remove the
toxic substrate, allowing species 1 to grow more. This result is very di�erent from the chemostat case because
particularly when we are close to the washout limit, species 1 will not be able to grow to a high enough density
and produce enough resource B to support the growth of species 2.
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4. Production and cross-feeding of substitutable nutrients
Consider two species of bacteria with density ρ1, ρ2, which generate nutrients nA and nB , respectively. Take these two
nutrients to be substitutable. Examples could be the polymers chitin and alginate, both of which can be broken down
into monomeric sugars by special (and di�erent) enzymes. The population dynamics of this system in a chemostat can be
described by the following system of ODEs:

ρ̇1 = (v1AnA + v1BnB) · ρ1 − µ · ρ1

ρ̇2 = (v2AnA + v2BnB) · ρ2 − µ · ρ2
ṅA = γ1Aρ1 − µnA − (v1Aρ1 + v2Aρ2) · nA
ṅB = γ2Bρ2 − µnB − (v1Bρ1 + v2Bρ2) · nB

where viα are the nutrient uptake matrix introduced before, µ is the dilution rate, and γ1A, γ1B are the two nutrient
production rates. The yield factor has been set to unity for simplification.

(a) In the limit of small µ, show that steady state solution would have n∗α ∝ µ and ρ∗i ∝ µ2.

Solution
Considering the equations for the populations, at steady state we have:{

v1An
∗
A + v1Bn

∗
B = µ

v2An
∗
A + v2Bn

∗
B = µ

⇒
(
v1A v1B
v2A v2B

)(
n∗A
n∗B

)
=

(
µ
µ

)
⇒

⇒
(
n∗A
n∗B

)
=

1

v1Av2B − v1Bv2A

(
µ(v2B − v1B)
µ(v1A − v2A)

)
and so indeed n∗α ∝ µ. From the equation for the resources, on the other hand:{

γ1Aρ
∗
1 − µn∗A − (v1Aρ

∗
1 + v2Aρ

∗
2)n
∗
A = 0

γ1Bρ
∗
1 − µn∗B − (v1Bρ

∗
1 + v2Bρ

∗
2)n
∗
B = 0

⇒

⇒
(
γ1A − v1An∗A −v2An∗A
γ1B − v1Bn∗B −v2Bn∗B

)(
ρ∗1
ρ∗2

)
=

(
µn∗A
µn∗B

)
⇒

⇒
(
ρ∗1
ρ∗2

)
=

1

(v1Av2B − v1Bv2A)n∗An∗B + v2Aγ1Bn∗A − v2Bγ1An∗B

(
−v2Bn∗B v2An

∗
A

v1Bn
∗
B − γ1B γ1A − v1An∗A

)(
µn∗A
µn∗B

)

⇒
(
ρ∗1
ρ∗2

)
=

1

(v1Av2B − v1Bv2A)n∗An∗B + v2Aγ1Bn∗A − v2Bγ1An∗B

(
(v2A − v2B)µn∗An∗B

(v1Bn
∗
B − v1An∗A + γ1A − γ1B)µn∗An∗B

)
Now, since nα ∝ µ we have:

(v1Av2B − v1Bv2A)n∗An∗B + v2Aγ1Bn
∗
A − v2Bγ1An∗B ∝ aµ2 + bµ
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(v2A − v2B)µn∗An∗B ∝ cµ3

(v1Bn
∗
B − v1An∗A + γ1A − γ1B)µn∗An∗B ∝ dµ4 + eµ3

In the limit of small µ, this expressions can be approximated as:

(v1Av2B − v1Bv2A)n∗An∗B + v2Aγ1Bn
∗
A − v2Bγ1An∗B ∼ bµ

(v2A − v2B)µn∗An∗B ∼ cµ3

(v1Bn
∗
B − v1An∗A + γ1A − γ1B)µn∗An∗B ∼ eµ3

Therefore: (
ρ∗1
ρ∗2

)
∼ 1

bµ

(
cµ3

eµ3

)
⇒ ρ∗i ∝ µ2

(b) By setting ṅα = 0, solve for the steady state condition n∗A(ρ1, ρ2) and n∗B(ρ1, ρ2). Find the leading order dependence
on ρ1 and ρ2 in the limit of small µ. Substitute these expression into the ODEs for ρ1 and ρ2 to obtain two nonlinear
ODEs involving only ρ1 and ρ2 to the leading order for small µ.

Solution
From ṅA = 0 and ṅB = 0 (i.e., we assume that the time evolution of the resources is fast) we have:

γ1Aρ1 − µn∗A − (v1Aρ1 + v2Aρ2)n
∗
A = 0 γ1Bρ1 − µn∗B − (v1Bρ1 + v2Bρ2)n

∗
B = 0

which yields:
n∗A =

γ1Aρ1
µ+ v1Aρ1 + v2Aρ2

n∗B =
γ1Bρ1

µ+ v1Bρ1 + v2Bρ2

and by substituting this in the equations for ρ̇i we get:

ρ̇1 = ρ1

[
v1Aγ1A

µ+ v1Aρ1 + v2Aρ2
+

v1Bγ1B
µ+ v1Bρ1 + v2Bρ2

− µ
]

In the limit of small µ, since ρi ∝ µ2 we can approximate:

n∗A =
γ1Aρ1

µ+ v1Aρ1 + v2Aρ2
∼ γ1A

µ
ρ1 n∗B =

γ1Bρ1
µ+ v1Bρ1 + v2Bρ2

∼ γ1B
µ
ρ1

and so we can write:

ρ̇1 ' ρ1
(
v1Aγ1A
µ

ρ1 +
v1Bγ1B
µ

ρ2 − µ
)

ρ̇2 ' ρ2
(
v2Aγ1A
µ

ρ1 +
v2Bγ1B
µ

ρ2 − µ
)

(c) Plot the null-clines and sketch the phase flow of the ODEs obtained in part (b) for i) v1A > v2A and v2B > v1B , and ii)
v1A < v2A and v2B < v1B . Describe the dynamics of the system in words for each regime, in particular, the dependence
on initial densities ρ1(0) and ρ2(0).

Solution
The nullclines are the two lines given by:

v1Aγ1A
µ

ρ1 +
v1Bγ1B
µ

ρ2 = µ
v2Aγ1A
µ

ρ1 +
v2Bγ1B
µ

ρ2 = µ
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which can be represented as follows:

v1A < v2A, v2B < v1B

ρ1

ρ2

µ2

v1Aγ1A

µ2

v1Bγ2B

µ2

v2Aγ1A

µ2

v2Bγ2B

v1A > v2A, v2B > v1B

ρ1

ρ2

µ2

v2Aγ1A

µ2

v2Bγ2B

µ2

v1Aγ1A

µ2

v1Bγ2B

The phase flow of the system for γ1A = γ2B = µ = 1 is the following:
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v1A = v2B = 2, v2A = v1B = 1

where we are also representing the nullclines.
In both cases, depending on the initial condition (ρ1(0), ρ2(0)) the system can either end up in (0, 0) (i.e., both
species go to extinction) or go towards (∞,∞) (i.e., both species grow without limit). In this latter case, the
ratio of the two populations remains constant (the flow is well approximated by lines in the (ρ1, ρ2) space in
this case), and the value of the ratio depends on the initial condition.

(d) Investigate the growth phase at high densities (the runaway part of (c)) by assuming the nutrients have reached constant
concentrations of values n∗A and n∗B , while the two species grow exponentially with rates λ1 and λ2. Find the values of n∗A
and n∗B for i) λ1 > λ2 and ii) λ1 < λ2. Relate the resulting dynamics to the simple producer-cheater relation discussed
in class and use the results derived in class to describe the parameter regime where species 1 dominates, species 2 dominates,
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or when either species can dominate. In the last case, what is species dominance determined by?

Solution
From the assignment, when nA = n∗A and nB = n∗B we have ρi ∝ eλit with i = 1, 2. If λ1 > λ2, in the
long time limit we have ρ1 � ρ2. From the equations of the system, we see that this leads to ṅB < 0 because
the uptake term−v1BnBρ1 is going to be much larger than the production rate γ2Bρ2. Therefore, in the large
time limit n∗B → 0; if we now set ṅA = 0 we have:

γ1Aρ1 = v1An
∗
Aρ1 ⇒ n∗A =

γ1A
v1A

In this case, therefore, since resourceB is completely removed from the system by species 1, species 2 is behaving
as a cheater because it grows on resource A, which is being produced by species 1. This situation is stable (i.e.,
species 1 will dominate) if v1A > v2A (i.e., if species 1 uptakes the only available resource faster than species 2).

The case λ1 < λ2 is equivalent to the previous one, provided we substitute species 1↔ species 2 and resource
A↔ resource B. In particular, when λ1 < λ2 we will have n∗A = 0 and n∗B = γ2B/v2B . This time it’s species
1 that is behaving as a cheater, and species 2 dominates if v2B > v1B .

When v1A < v2A or v2B < v2B either species can dominate. In particular the system is bistable, and species
dominance is determined by the initial conditions.

(e) Continuing the investigation above, we next study the case λ1 = λ2 (and refer to both as λ). Find n∗A and n∗B in this
case and the growth rate λ in terms of the model parameters. [To simplify the algebra, you may take v1A = v2B ≡ v,
v2A = v1B = v′, and γ1A = γ1B ≡ γ.] To see whether the fixed point solution obtained here is stable, apply Tilman’s
analysis in the space of (nA, nB) for the two parameter regimes discussed in (c): i) v1A > v2A and v2B > v1B , and ii)
v1A < v2A and v2B < v1B .

Solution
Since λ1 = λ2 = λ, we can write ri(n∗A, n

∗
B) = r∗. Therefore, by definition we have:

v1An
∗
A + v1Bn

∗
B = r∗ v2An

∗
A + v2Bn

∗
B = r∗

which is a system of two equations in two variables. The solution of this system is:(
v1A v1B
v2A v2B

)(
n∗A
n∗B

)
=

(
r∗

r∗

)
⇒

(
n∗A
n∗B

)
=

r∗

v1Av2B − v1Bv2A

(
v2B − v1B
v1A − v2A

)
As suggested, we simplify the algebra by setting v1A = v2B = v and v2A = v1B = v′, which yields:(

n∗A
n∗B

)
=

r∗

v2 − (v′)2

(
v − v′
v − v′

)
=

( r∗

v+v′
r∗

v+v′

)
Therefore:

n∗A = n∗B =
r∗

v + v′

We now have to express r∗ in terms of the model parameters. We can do so by using the equations for nα at
steady state:

γ1Aρ
∗
1 = v1An

∗
Aρ
∗
1 + v2An

∗
Aρ
∗
2 γ2Bρ

∗
2 = v1Bn

∗
Bρ
∗
1 + v2Bn

∗
Bρ
∗
2
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We can rearrange these equations as:

(γ1A − v1An∗A)ρ∗1 = v2An
∗
Aρ
∗
2 (γ2B − v2Bn∗B)ρ∗2 = v1Bn

∗
Bρ
∗
1

By multiplying each sides of these equations, we get:

(γ1A − v1An∗A)(γ2B − v2Bn∗B) = v2An
∗
Av1Bn

∗
B

If we now introduce the algebraic simplifications (including γ1A = γ2B = γ) this becomes:

(γ − vn∗A)(γ − vn∗B) = (v′)2n∗An
∗
B

and by also plugging in the expression of n∗A and n∗B :(
γ − v r∗

v + v′

)2

=

(
v′

r∗

v + v′

)2

By taking the square root on both sides, and considering only the positive root:

γ − v r∗

v + v′
= v′

r∗

v + v′
⇒ r∗

v + v′

v + v′
= γ ⇒ r∗ = γ

Therefore, λ = r∗ = γ.

For Tilman’s graphical analysis, we can rewrite the equations for ṅα as:(
ṅA
ṅB

)
= ρ∗1

(
γ1A − v1AnA
−v1BnB

)
︸ ︷︷ ︸

~J1

+ρ∗2

(
−v2AnA

γ2B − v2BnB

)
︸ ︷︷ ︸

~J2

where we are neglecting the terms proportional to µ, since we are in the slow dilution rate.
Graphically, the situation in the two cases is the following:

v1A < v2A, v2B < v1B

nA

nB

µ
v1A

µ
v1B

µ
v2A

µ
v2B

ρ̇1 > 0, ρ̇2 < 0

ρ̇1 < 0, ρ̇2 > 0

~J1

~J2

v1A > v2A, v2B > v1B

nA

nB

µ
v2A

µ
v2B

µ
v1A

µ
v1B

ρ̇1 < 0, ρ̇2 > 0

ρ̇1 > 0, ρ̇2 < 0

~J1

~J2

Therefore, when v1A < v2A and v2B < v1B an increasee in ρ1 results in ρ̇1 < 0, and similarly an increasee in
ρ2 yields ρ̇2 < 0: the system is stable. On the other hand, when v1A > v2A and v2B > v1B an increasee in ρi
leads to ρ̇i > 0: the system is unstable.
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(f) Summarize your findings in parts (d) and (e) by indicating the phase diagram in the space of (v1A/v2A, v2B/v1B). Com-
pare your result to the conditions derived in class for the case of essential nutrients. Discuss the di�erences between the two
cases.

Solution
The phase diagram is:

v1A
v2A

v2B
v1B

1

1

cooperative growth

bistability
(basin of attraction

depends on γ1A/γ2B)

species 1 cheats

species 2 cheats

With respect to the conditions derived for the case of essential nutrients, the “quadrants” of bistability and
cooperative growth are switched. In other words, in the case of essential nutrients the species coexist when
v1A > v2A and v2B > v1B , while either of the two species will dominate when v1A < v2A and v2B < v1B .
This di�erence arises from the di�erent e�ect that a low resource has on population growth: when the resources
are substitutable, if one of them runs low each species can grow by uptaking the other, while if both resources are
essential then both species will slow down if either of the two resources is scarce. Therefore, when resources are
essential having two species that uptake faster their “own” resource (i.e., the resource that they are producing)
has a stabilizing e�ect, because if either of the two populations becomes larger both of them will be slowed
down by the decreased availability of resources. On the other hand, with substitutable resource this situation is
de-stabilizing because in this case if each species uptakes faster its “own” resource any increasee in ρi will have
a positive e�ect on species i but not on the other. Conversely, when resources are substitutable having species 1
that uptakes faster the resource made by species 2 and viceversa has a stabilizing e�ect because any increasee in
ρi will have a positive e�ect on the other species, bringing the system back to equilibrium.
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