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Topics covered by this tutorial

Taylor expansion

First-order linear ODEs and coupled linear ODEs

Linear stability analysis

Bifurcation theory

Important!

Please DO interrupt me at any time if you have questions!
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Taylor expansion

Basic idea
We want to approximate a function f (x) around a point x0 using polynomials.
Why? Because polynomials are simple! This way, we can express complicated functions with
simpler terms (at least locally).

Taylor’s theorem

If f (x) is continuous (i.e., it doesn’t have any “jumps”)
and differentiable (i.e., it doesn’t have “cusps” or
“spikes”) in x0, then around x0 we can approximate:

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2+

+
1
6
f ′′′(x0)(x − x0)3 + · · · (1)
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Taylor expansion

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2
f ′′(x0)(x − x0)2 +

1
6
f ′′′(x0)(x − x0)3 +O(x4)

Important things

This result is true in any number of dimensions!

In practice, you will never need to go beyond the second order term.
If you do, there is almost certainly something wrong: all the interesting physics happens
within the first two orders, beyond that it’s just computational subtleties that we will never
be interested in

The most important point from this theorem is the following:
If we are close enough to x0, we can approximate any function with a linear one

This last point is particularly important, because we can say a lot about linear ODE but almost
nothing about non-linear ODEs in general. Thanks to this theorem, however, we can understand
the behavior of nonlinear ODEs around specific points.
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First-order linear ODEs

We want to solve this type of ODE:
dy(t)
dt

= λy(t) (2)

In order to do so, we use this trick:

dy

y
= λdt ⇒

∫ y(t)

y(t0)

dy

y
=

∫ t

t0

λdt ⇒

⇒ lny
∣∣∣y(t)
y(t0)

= λ(t − t0) ⇒ lny(t)− lny(t0) = λ(t − t0) ⇒

⇒ ln
y(t)
y(0)

= λ(t − t0) ⇒ y(t) = y(t0)e
λ(t−t0)

This is just a trick and not the mathematically rigorous way to show that the solution of eq 2 is
an exponential. But it works, so we use it.
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First-order linear coupled ODEs

A system of couple ODEs are two or more ODEs where each variable depends on the other ones.
For example:

dx
dt

= a1x+ b1y
dy

dt
= a2x+ b2y (3)

The trick, in this case, is to use the matrix notation to rewrite the equation in terms of one
two-dimensional variables:

⇒ d
dt

(
x
y

)
=

(
a1 b1
a2 b2

)
︸    ︷︷    ︸

:=A

(
x
y

)
= A

(
x
y

)
(4)

We can now use the same trick shown before to write the solution of eq (3):(
x(t)
y(t)

)
= exp(At)

(
x(0)
y(0)

)
(5)

even though it is not clear what is the meaning of the exponential of a matrix. We are also
assuming t0 = 0 for the sake of simplicity.
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First-order linear coupled ODEs(
x(t)
y(t)

)
= exp(At)

(
x(0)
y(0)

)
(6)

For our purposes we actually don’t need to know what the exponential of a matrix is. A
mathematical theorem, in fact, ensures us that we can write the solution of our coupled ODEs as:(

x(t)
y(t)

)
= c1e

λ1t~u1 + c2e
λ2t~u2 (7)

where:

λ1 and λ2 are the two eigenvalues of the matrix A

~u1 and ~u2 are the two eigenvectors of the matrix A

c1 and c2 are constants (to be determined from the initial conditions)

Therefore
In order to solve a system of coupled linear ODEs we just need to know the so-called spectral
properties (i.e., eigenvalues and eigenvectors) of the matrix A
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c1 and c2 are constants (to be determined from the initial conditions)

Therefore
In order to solve a system of coupled linear ODEs we just need to know the so-called spectral
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First-order linear coupled ODEs

As an example, let’s solve this system:

dx
dt

= 3x − 4y
dy

dt
= 4x − 7y (8)

with initial conditions x(0) = y(0) = 1.

First, the matrix A is:

A =
(
3 −4
4 −7

)
(9)

Let’s first compute its eigenvalues. Remember that by definition λ is an eigenvalue of A if
A~u = λ~u (with ~u its corresponding eigenvector), or equivalently:

A~u = λ~u ⇒ A~u −λ~u = 0 ⇒ (A−λI)~u = 0 ⇒ det(A−λI) = 0 (10)

where I =
(
1 0
0 1

)
is the identity matrix.
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First-order linear coupled ODEs

det(A−λI) = 0 (11)

Therefore, we need to solve:

det
[(

3 −4
4 −7

)
−λ

(
1 0
0 1

)]
= det

(
3−λ −4

4 −7−λ

)
= 0 (12)

Since by definition:

det
(
a b
c d

)
= ad − bc (13)

We have:

det
(
3−λ −4

4 −7−λ

)
= (3−λ)(−7−λ)− 4(−4) = 0 ⇒ −21− 3λ+ 7λ+λ2 + 16 = 0 ⇒

⇒ λ2 + 4λ− 5 = 0

(14)
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First-order linear coupled ODEs

λ2 + 4λ− 5 = 0 (15)

And the roots of this quadratic equation are:

λ =
−4±

√
(−4)2 − 4 · 1 · (−5)

2 · 1
=
−4±

√
16 + 20
2

=
−4±

√
36

2
=
−4± 6

2
= 1,−5

(16)

We have therefore found the eigenvalues of A:

λ1 = 1 λ2 = −5 (17)

Notice

In this case we’ve found two distinct real eigenvalues, but they can also be complex. In that case
they are always conjugated, i.e. of the form a± ib.

We can now use the eigenvalues to find the eigenvectors.
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First-order linear coupled ODEs
By definition the eigenvectors ~u1 and ~u2 satisfy A~u1 = λ1~u1 and A~u2 = λ2~u2, respectively.

For the
first eigenvector λ1 = 1 we can write:

(
3 −4
4 −7

)(
α
β

)
= 1

(
α
β

)
⇒

3α − 4β = α
4α − 7β = β

⇒ α = 2β

(18)

At this point we can choose any value for β (the direction of the vector is always the same,
changing β changes only its magnitude). To make things simple, we can choose β = 1 so that:

~u1 =
(
2
1

)
(19)

We can then do the same thing for the other eigenvalue λ2 = −5:(
3 −4
4 −7

)(
α
β

)
= −5

(
α
β

)
⇒

3α − 4β = −5α
4α − 7β = −5β

⇒ β = 2α ⇒ ~u2 =
(
1
2

)

(20)
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First-order linear coupled ODEs
dx
dt

= 3x − 4y
dy

dt
= 4x − 7y with x(0) = y(0) = 1

(
x(t)
y(t)

)
= c1e

λ1t~u1 + c2e
λ2t~u2 (21)

We can therefore write the solution of our system as:(
x(t)
y(t)

)
= c1e

t

(
2
1

)
+ c2e

−5t
(
1
2

)
(22)

In order to determine the values of c1 and c2, we compute this expression at t = 0:

(
x(0)
y(0)

)
=

(
1
1

)
= c1e

0
(
2
1

)
+ c2e

0
(
1
2

)
⇒

1 = c1 · 2 + c2 · 1
1 = c1 · 1 + c2 · 2

⇒

2c1 + c2 = 1
c1 + 2c2 = 1

⇒ c1 = c2 =
1
3

(23)

Therefore, the solution of our system of coupled ODEs is:

x(t) =
2
3
et +

1
3
e−5t y(t) =

1
3
et +

2
3
e−5t (24)
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Linear stability analysis

We would like to solve non-linear ODEs (and systems of coupled ODEs), i.e.:

ẋ = f (x) (25)

where ẋ = dx
dt and f (x) is a non-linear function. For example:

ẋ = x − x2 ẋ =
x

1 + x
(26)

Problem
Contrarily to linear ODEs, there is no general theorem that allows us to solve non-linear ODEs
in general. They almost always cannot be solved analytically.

Can we say anything about these systems without solving them analytically?

We can use Taylor expansion to approximate the non-linear function f (x) with a linear one
around a point of interest x0, and solve the linearized ODEs.
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Linear stability analysis

The most interesting points of any dynamical system are its equilibria (or stationary points):

ẋ = f (x) ⇒ x∗ is an equilibrium if f (x∗) = 0 (27)

"Informal" definitions

If a dynamical system starts in an equilibrium x∗, it will always remain in x∗ (ẋ = 0)

An equilibrium is said to be stable if any solution starting “close” to x∗ will always remain
“close” to x∗ (mathematically: f ′(x∗) < 0)

An equilibrium is said to be unstable if there is at least one solution starting “close” to x∗

which goes “away” from x∗ (mathematically: f ′(x∗) > 0)

We can get a sense of the stability of equilibria without even trying to solve a non-linear system
by drawing stream plots (or flow plots).
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Stream plots

Let’s see how to do this in a particular case:

ẋ = x3 − x2 − 2x

f (x) = x3 − x2 − 2x = x(x − 2)(x+ 1) (28a)

Therefore, the equilibria are:

x∗ = −1 x∗ = 0 x∗ = 2 (28b)

When f (x) > 0, ẋ > 0 so x increases, and vicev-
ersa x decreases when f (x) < 0. Therefore:

x∗ = 0→ stable; x∗ = −1, x∗ = 2→ unstable.
Important
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When f (x) > 0, ẋ > 0 so x increases, and vicev-
ersa x decreases when f (x) < 0. Therefore:

x∗ = 0→ stable; x∗ = −1, x∗ = 2→ unstable.
Important

In one dimension, if there is more than one equilibrium their stability always “alternates”: after
a stable equilibrium we must find an unstable one, and viceversa.

14



Stream plots

Let’s see how to do this in a particular case: ẋ = x3 − x2 − 2x
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When f (x) > 0, ẋ > 0 so x increases, and vicev-
ersa x decreases when f (x) < 0. Therefore:

x∗ = 0→ stable; x∗ = −1, x∗ = 2→ unstable.

Important

In one dimension, if there is more than one equilibrium their stability always “alternates”: after
a stable equilibrium we must find an unstable one, and viceversa.

14



Linear stability analysis

Stream plots are very useful and easy to do, but they have limitations (e.g., we can’t draw in
more than 3 dimensions!).

Can we study the stability of ODEs in any dimension without solving them analytically?

Yes, thanks to the linear stability analysis.

~̇x = f (~x) where ~x =


x1(t)
x2(t)
...

xn(t)

 and f (~x) =


f1(~x)
f2(~x)
...

fm(~x)

 (29)

If f (~x0) = 0 (i.e., ~x0 is an equilibrium) we can use Taylor’s theorem to approximate the system
around ~x0 as:

ẋ = f (~x0)︸︷︷︸
=0

+J(~x0)(~x − ~x0) = J(~x0)(~x − ~x0) (30)
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Linear stability analysis
ẋ = J(~x0)(~x − ~x0) (31)

where J(~x0) is the jacobian matrix of f computed in ~x0:

J(~x0) =


∂f1
∂x1

(~x0) · · · ∂f1
∂xn

(~x0)
...

. . .
...

∂fm
∂x1

(~x0) · · · ∂fm
∂xn

(~x0)

 (32)

This matrix basically contains information on the linear behavior of each component of f in
each direction.
However, we have already seen how to solve linear ODEs like (31)! The solution is:

~x(t) = ~x0 +
n∑
i=1

cie
λi t~ui (33)

where λi are the eigenvalues of J(~x0), ~ui are its eigenvectors, and ci are constants (to be
determined from the initial conditions).
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Linear stability analysis

~x(t) = ~x0 +
n∑
i=1

cie
λi t~ui (34)

The eigenvalues λi can in general be complex. According to their values we can have different
interesting cases:

If Reλi < 0 for all λi , eλi t
t→∞−→ 0 and so ~x(t)→ ~x0: ~x0 is a stable equilibrium

If there is one eigenvalue λj for which Reλj > 0, eλi t
t→∞−→ ∞ and so the solution will move

away from ~x0: ~x0 is an unstable equilibrium

If some Reλi < 0 and some Reλi = 0, this method does not allow to determine the stability
of the equilibrium
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Linear stability analysis

If Imλi , 0, then the solution will oscillate
around the equilibrium (eix = cosx+ i sinx)

If the largest Reλi < 0, the solution spirals
towards ~x0

If the largest Reλi > 0, the solution spirals
away from ~x0

If all Reλi = 0, the solution oscillates
perpetually around ~x0
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Linear stability analysis
Let’s see a couple of examples.

ẋ = x3 − x2 − 2x (35)

x

f (x)

0 2−1

f (x) = x3 − x2 − 2x (36a)

In this case the Jacobian is simply the derivative:

f ′(x) = 3x2 − 2x − 2 (36b)

and computing it in the three equilibria:

f ′(−1) = 3 f ′(0) = −2 f ′(2) = 6 (36c)

Therefore:
x∗ = −1,x∗ = 2→ unstable
x∗ = 0→ stable
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Linear stability analysis
ẋ = −x ẏ = ky3 with k > 0 (37)

f

(
x
y

)
=

(
−x
ky3

)
(38a)

The only equilibrium is (x,y) = (0,0), and the ja-
cobian matrix is:

J =
(
−1 0
0 3ky2

)
|y=0

=
(
−1 0
0 0

)
(38b)

Therefore, the eigenvalues are −1 and 0 → we
can’t say anything about the equilibrium!

What if we draw the stream plot?

The equilibrium is unstable.
In this case (0,0) is called saddle point.

Excercise: what happens if k < 0?
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ẋ > 0
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ẋ > 0
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Bifurcation theory

Very often, we encounter dynamical systems whose equations depend on parameters, and we
would like to understand the behavior of the system as these parameters are changed.

Example: logistic growth and predation
dρ

dt
= r · ρ

(
1−

ρ

ρ̃

)
−
δ · ρ

1 + ρ
ρk

(39)

How does the system behave as we change the values of the parameters?

In general, as the parameters of a dynamical system are changed, equilibria can be created or
destroyed, or their stability can change.
These changes in the properties of equilibria are called bifurcations, and the values of the
parameters at which this changes occur are called bifurcation points.
There are three major types of bifurcation:

Saddle-point bifurcation

Transcritical bifurcation

Pitchfork bifurcation
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Bifurcation theory
Saddle-point bifurcation

22

It is the basic mechanism by which fixed points are created and destroyed.
The simplest example of a saddle-point bifurcation is given by:

ẋ = r + x2 (40)

where r is the parameter.

If r > 0, there are no equilibria, and any solution

will go to infinity (i.e., x(t)
t→∞−→ ∞ for any initial

condition).
If r = 0, one equilibrum emerges at x∗ = 0.
This equilibrium is stable from one side and unstable
from the other.
Such equilibria are called saddle points.
If r < 0 there are two fixed points, one stable and
one unstable.
The bifurcation point in this system is r = 0.
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Bifurcation theory
Saddle-point bifurcation

We can also draw a bifurcation diagram, i.e. a plot of how the value and the stability of the
equilibria change as a function of r:

r

x∗
unstable

stable

Important

This type of bifurcation is also known as turning point bifurcation, because the bifurcation point
r = 0 can also be called turning point

23
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Bifurcation theory
Transcritical bifurcation

The simplest example fo a transcritical bifurcation is:

ẋ = rx − x2 (41)

Notice
This is the logistic growth equation, but right now we are not restricting x and r to be positive
(i.e., they can also be negative).

How does the function f (x) = rx − x2 change as we change r?

The function is a parabola with roots at x∗ = 0
and x∗ = r, maximum in xmax = r/2 and its maxi-
mum value is f (xmax) = r2/4.

24
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Bifurcation theory
Transcritical bifurcation

Therefore:

When r < 0, we have one unstable equilibrium
in x∗ = r and a stable one in x∗ = 0.

When r = 0, we have one unique equilibrium
(saddle point) in x∗ = 0.

When r < 0, we have one stable equilibrium in
x∗ = r and an unstable one in x∗ = 0.

Therefore

One equilibrium always remains in x∗ = 0, but as r is changed another equilibrium (x∗ = r)
“crosses” over it and “exchanges stability” with it.
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“crosses” over it and “exchanges stability” with it.

25



Bifurcation theory
Transcritical bifurcation

Therefore:

When r < 0, we have one unstable equilibrium
in x∗ = r and a stable one in x∗ = 0.

When r = 0, we have one unique equilibrium
(saddle point) in x∗ = 0.

When r < 0, we have one stable equilibrium in
x∗ = r and an unstable one in x∗ = 0.

x

f (x)
r > 0

r0

Therefore

One equilibrium always remains in x∗ = 0, but as r is changed another equilibrium (x∗ = r)
“crosses” over it and “exchanges stability” with it.

25



Bifurcation theory
Transcritical bifurcation

Therefore:

When r < 0, we have one unstable equilibrium
in x∗ = r and a stable one in x∗ = 0.

When r = 0, we have one unique equilibrium
(saddle point) in x∗ = 0.

When r < 0, we have one stable equilibrium in
x∗ = r and an unstable one in x∗ = 0.

x

f (x)
r > 0

r0

Therefore

One equilibrium always remains in x∗ = 0, but as r is changed another equilibrium (x∗ = r)
“crosses” over it and “exchanges stability” with it.

25



Bifurcation theory
Transcritical bifurcation

Therefore:

When r < 0, we have one unstable equilibrium
in x∗ = r and a stable one in x∗ = 0.

When r = 0, we have one unique equilibrium
(saddle point) in x∗ = 0.

When r < 0, we have one stable equilibrium in
x∗ = r and an unstable one in x∗ = 0.

x

f (x)
r > 0

r0

Therefore
One equilibrium always remains in x∗ = 0, but as r is changed another equilibrium (x∗ = r)
“crosses” over it and “exchanges stability” with it.

25



Bifurcation theory
Transcritical bifurcation

The bifurcation diagram in this case looks like this:

r

x∗

stable

stable

unstable

unstable

Important

Contrarily to the saddle-point bifurcation no equilibrium is created or destroyed in this case,
but the bifurcation leads to the stability being “exchanged” between equilibria.
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Bifurcation theory
Supercritical pitchfork bifurcation

Therefore, in this case
A stable equilibrium becomes unstable and two new stable equilibria branch out of it.

27

There are two types of pitchfork bifurcations: supercritical and subcritical.
The simplest example of a supercritical pitchfork bifurcation is:

ẋ = rx − x3 (42)

Using the same approach as before:
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Bifurcation theory
Supercritical pitchfork bifurcation

In this case the bifurcation diagram looks like this:

r

x∗

stable unstable

stable

stable

(this is also why these types of bifurcations are called pitchfork bifurcations).
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Bifurcation theory
Subcritical pitchfork bifurcation

The simplest example of subcritical pitchfork bifurcation is:

ẋ = rx+ x3 (43)

Excercise
I leave you as an excercise to study this case (it’s the same as before with a different sign).
Draw a streamplot of the system for r < 0, r = 0 and r > 0 and verify that the bifurcation diagram
looks like this:

r

x∗

stable unstable

unstable

unstable
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Bifurcation theory
Last remarks

Since the properties of a bifurcation depend on ODEs ẋ = f (x) here f (x) is a simple polynomial,
the results we’ve found are always true for any f (x) locally around a point x0, using Taylor’s
expansion. For example:

Locally around x∗, f (x) “looks like” a parabola of the form r + x2, so we know that as r changes
the system will exhibit a saddle-point bifurcation around x∗.

30
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That’s all!

Questions?
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