

2. DNA binding sequences		
 typically 10-20 bp in bacteria 		
	protein	target sequence
	lac repressor	5' aattgtgagcggataacaatt 3' ttaacactcgcctattgttaa
	CRP	TGTGAGTTAGCTCACT ACACTCAATCGAGTGA
	λ repressor	TATCACCGCCAGAGGTA ATAGTGGCGGTCTCCAT
 lots of sequence variants 		

- consensus sequence often palindromic
- common to have 2~3 mismatches from the core consensus sequence
 -- "fuzzy" binding motif

ATTCTGTAACAGAGATCACACAAA CCTTTGTGATCGCTTTCACGGAGC AAAACGTGATCAACCCCTCAATTT AACTTGTGGATAAAATCACGGTCT **GTTTTGTTACCTGCCTCTAACTTT** TTAATTTGAAAATTGGAATATCCA AATTTGCGATGCGTCGCGCATTTT TTAATGAGATTCAGATCACATATA AATGTGTGCGGCAATTCACATTTA GAAACGTGATTTCATGCGTCATTT AAATGACGCATGAAATCACGTTTC TTGCTGTGACTCGATTCACGAAGT TTTTTGTGGCCTGCTTCAAACTTT GAATTGTGACACAGTGCAAATTCA ATAATGTTATACATATCACTCTAA CGATTGTGATTCGATTCACATTTA **GTTTTGTGATGGCTATTAGAAATT** GAACTGTGAAACGAAACATATTTT AATGTGTGTAAACGTGAACGCAAT TTTGTGTGATCTCTGTTACAGAAT GTAATGTGGAGATGCGCACATAAA TTTTTGCAAGCAACATCACGAAAT TTAATGTGAGTTAGCTCACTCATT ATTATTTGCACGGCGTCACACTTT ATTATTTGAACCAGATCGCATTAC TAATTGTGATGTGTGTATCGAAGTGTTGTGA.....TCACA....

in vivo binding: Effect of the genomic background Q: occupation freq f_j of a "target site" S_j in genomic DNA? n=1 n=1 $s_{n=j}$ n=Nmodel genomic DNA as a collection of N "sites" of L nt each $S_n = \{b_1^{(n)}, b_2^{(n)}, ..., b_L^{(n)}\}$ (with $N \sim 10^7$ for E. coli) in vitro binding constant: $K_n \equiv K(S_n) = [P] \cdot [S_n] / [P \cdot S_n] \propto e^{G_n/kT}$ binding energy: $G_n \equiv G(S_n) = G^* + \Delta G_n$, where $\Delta G_n \equiv \sum_{i=1}^L \mathcal{G}_i(b_i^{(n)})$ • single TF in bacterium cell (assume TF confined to DNA) $\Rightarrow f_j = \frac{[P \cdot S_j]}{\sum_{n=1}^N [P \cdot S_n]} = \frac{K_j^{-1}}{\sum_{n=1}^N K_n^{-1}} = \frac{1}{1 + \sum_{n \neq j} K_j / K_n} = \frac{1}{1 + \sum_{n \neq j} e^{(\Delta G_j - \Delta G_n)/kT}}$ • multiple (N_P) TFs [grand canonical ens] • cf: in vitro binding $\Rightarrow f_j \approx \frac{1}{1 + (\sum_{n \neq j} e^{(\Delta G_j - \Delta G_n)/kT})/N_P}$ $f(S) = \frac{[P]}{[P] + K(S)} = \frac{1}{1 + K(S) / [P]}$

• effective *in vivo* binding constant • effective *in vivo* binding constant • cf: *in vitro* binding $f_{j} \approx \frac{1}{1 + \left(\sum_{n \neq j}^{N} e^{(\Delta G_{j} - \Delta G_{n})/kT}\right)/N_{p}}$ • cf: *in vitro* binding $f(S) = \frac{1}{1 + K(S)/[P]}$ • $f(S) = \frac{1}{2} + \frac{1}$

