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tsx initiation control
by σ-factors and TFs

tsx elongation control
by roadblockers and rho

tsx termination control
by proteins and sRNA

tsl initiation control
by proteins and sRNA tsl elongation control

mRNA stability controlmRNA stability control

post-tsl control: 
modification & proteolysis

genetic circuits utilize all
these modes of regulation!
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Topic 4: Genetic Circuits

A. Models and behaviors of simple genetic circuits
1. general model of gene expression
2. negative autoregulation
3. positive auto-regulation
4. oscillators

B. Noise in gene expression
C. Metabolic control
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𝑑
𝑑𝑡 𝑚! = 𝛼",! 𝑔! − 𝛽".! 𝑚!

𝑑
𝑑𝑡 𝑝! = 𝛼%,! 𝑚! − 𝛽%,! + 𝜆 [𝑝!]

A. Models and behaviors of simple genetic circuits
1. Model of gene expression:

am

ap

bm

βp

mean-field description (rate eqn) for gene i
[gi] = conc of promoters   
[mi] = conc of functional mRNA transcript
[pi] = conc of protein product

𝑔 = # promoters per cell; 1-8/cell for chromosomal promoters; can be >100 on plasmids
am = am,0 P mRNA synthesis rate per promoter; max ~ 1/sec; typical ~ 1/min
𝛽!"# = mRNA life time; typical 1~2 min; max ~ doubling time
ap = protein synthesis rate per mRNA; typical high ~ 10/min
𝛽%&' = protein life-time; max ~ infinite; short ~ min

10~20 proteins/mRNA
(“burstiness”)

𝑔

steady-state mRNA level:
𝑚!

∗ = 𝑔! ⋅ 𝛼",!/𝛽",! ~ few/cell

steady-state protein level:
𝑝! ∗ = 𝑚!

∗ ⋅ 𝛼%,!/𝛽 ~ 1000/cell

growth 
rate

b
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not contained in the simple model:
• delay from tsx init to completion of mRNA synthesis

[typically ~ 0.5 min, could be longer with roadblocks, tsx pauses, etc]
• delay in protein synthesis (~ min) and/or maturation (can be > 10 min)
• fluctuations within one cell-doubling

– dilution due to (exponential) growth of cell volume 𝑉)*++(𝑡)
– gene dose change (differential increase of 𝑔(𝑡) and 𝑉)*++(𝑡) during cell cycle) 
– changes in conc of RNAp (!am), ribosomes (!ap), RNases (!bm),

proteases (!βp), global regulators, etc.

• stochasticity in transcription, translation, degradation, and cell division
• stochastic variations in cellular growth rate
! simple rate eqn (+ stochastic improvement) not faithfully applicable

to time scales ≲ cell doubling time
[very short-time dynamics okay; e.g., allosteric control, protein modifications]

! for time scales ≫ cell doubling time, parameters are well-defined
in exponential growth phase

set d[m]/dt = 0 (fast) to get ,,- 𝑝! = 𝛼![𝑔!] − 𝛽! 𝑝! where 𝛼! = 𝛼",!𝛼%,!/𝛽",!
[note: ap,i /bm,i ~ # transcripts per mRNA life-time = “burstiness” of mRNA i ]

! all parameters growth-rate dependent (next major topic); fixed for now.
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Below, we will explore behaviors of simple genetic circuit motifs 
using mechanisms of tsx control; will illustrate the effect of post-
transcriptional control which enhances cooperativity 

consider tsx init control only (for simplicity), 
with 𝑚2

∗ = 𝛼4,6𝒫2/𝛽4,2 = 𝑚6,2 ⋅ ℛ

ℛ. =
1 + 𝑓.

𝐴
𝐾.

/$

1 + 𝐴
𝐾.

/$ ℛ0 =
1 + 𝑓0&'

𝑅
𝐾0

/%

1 + 𝑅
𝐾0

/%

lnRA

ln([A])
1

slope ≤ nA

KA

capacity: fA

lnRR

ln([R])

1

|slope| ≤ nR

KR

capacity: fR

𝑚1,! =
𝛼",1

𝛽",!

𝑅𝑁𝐴𝑃 23

𝐾4,!
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consider tsx init control only (for simplicity), 
with 𝑚2

∗ = 𝛼4,6𝒫2/𝛽4,2 = 𝑚6,2 ⋅ ℛ

ℛ. =
1 + 𝑓.

𝐴
𝐾.

/$

1 + 𝐴
𝐾.

/$ ℛ0 =
1 + 𝑓0&'

𝑅
𝐾0

/%

1 + 𝑅
𝐾0

/%

𝑚1,! =
𝛼",1

𝛽",!

𝑅𝑁𝐴𝑃 23

𝐾4,!

7
78 𝑝2 = 𝛼2 − 𝛽2 ⋅ [𝑝2]

𝛼2 = 𝛼9,2 ⋅ 𝑚2
∗ = 𝛼9,2𝑚6,2 ⋅ ℛ2

𝛽2 = 𝛽9,2 + 𝜆

in terms of protein dynamics
≡ 𝛼6,2 ⋅ 𝒢2

max rate: 𝒢! = ℛ!/max(ℛ!)

lnRA

ln([A])
1

slope ≤ nA

KA

capacity: fA

lnRR

ln([R])

1

|slope| ≤ nR

KR

capacity: fR
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consider tsx init control only (for simplicity), 
with 𝑚2

∗ = 𝛼4,6𝒫2/𝛽4,2 = 𝑚6,2 ⋅ ℛ

𝒢. = ℛ./𝑓. =
𝑓.&' +

𝐴
𝐾.

/$

1 + 𝐴
𝐾.

/$ 𝒢0 = ℛ0 =
1 + 𝑓0&'

𝑅
𝐾0

/%

1 + 𝑅
𝐾0

/%

𝑚1,! =
𝛼",1

𝛽",!

𝑅𝑁𝐴𝑃 23

𝐾4,!

7
78 𝑝2 = 𝛼2 − 𝛽2 ⋅ [𝑝2]

𝛼2 = 𝛼9,2 ⋅ 𝑚2
∗ = 𝛼9,2𝑚6,2 ⋅ ℛ2

𝛽2 = 𝛽9,2 + 𝜆

in terms of protein dynamics
≡ 𝛼6,2 ⋅ 𝒢2

max rate: 𝒢! = ℛ!/max(ℛ!)

ln GA

ln([A])

slope ≤ nA

KA

capacity: fA

ln GR

ln([R])

|slope| ≤ nR

KR

capacity: fR

1/f A

1

1/f R

1
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2. Negative autoregulation
(a very common network motif)

GR =
1+ fR

−1 [R] / KR( )n
1+ [R] / KR( )n

ln GR

ln([R])

1/fR

1

KR

R

β[R]/α0

[R]*

! general dependence of parameters on cellular physiology:
b = dilution due to cell growth; can vary ~10x 
a0 > 2-fold change thru cell cycle (gene dosage, Rb conc, etc)

also strongly dependent on growth rate
! complex circuits usually cannot tolerate wildly floating operation points
! expect [R]*/KR to be insensitive to parameters (i.e., homeostatic control)

for large n (cooperative repression)

assume circuit ‘properly’ biased: 𝐾0 > 𝑅 ∗ > 𝑓0
'//𝐾0 or  𝐾0 < 𝛼1/𝛽 < 𝐾0𝑓0

'//

𝑑
𝑑𝑡

𝑅 = 𝛼1𝒢0 𝑅 /𝐾0 − 𝛽[𝑅]

steady stat soln:
𝑅 ∗

𝐾0
=

𝛼1
𝛽𝐾0

'/(/7')
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3. Positive autoregulation

A

 
GA =

f −1 + [A] / KA( )n
1+ [A] / KA( )nln GA

ln([A])

f -1

1

KA

b[A]/a0

• large b/a0, [A]* ≈ basal level
• small b/a0, [A]* ≈ saturated level
• intermediate b/a0, [A]* has 3 soln

[A]
unstable
fixed pt

stable
fixed pt

stable
fixed pt

stability analysis (graphical):

a0/b

[A]*

bistable

history 
dependence

! regime of bistability from the 
existence of unstable fixed point

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾. − 𝛽[𝐴]

𝐴 ∗ = 𝛼1/𝛽

𝐴 ∗ = 𝛼1/(𝛽𝑓)
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3. Positive autoregulation

A

 
GA =

f −1 + [A] / KA( )n
1+ [A] / KA( )nln GA

ln([A])

f -1

1

KA

[A]
unstable
fixed pt

stable
fixed pt

stable
fixed pt

stability analysis (graphical):

! regime of bistability from the 
existence of unstable fixed point

stability analysis (analytic):

! s* > 1 for bistability

small perturbation:  δA ≡ [A]− [A]*

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾. − 𝛽[𝐴]

𝑑
𝑑𝑡 𝛿𝐴 = 𝛼1 J

𝑑𝒢.
𝑑 𝐴

. ∗
⋅ 𝛿𝐴 − 𝛽 ⋅ 𝛿𝐴

= 𝛼1
𝒢9
A ∗ 𝑠 𝐴 ∗ − 𝛽 ⋅ 𝛿𝐴 = 𝑠∗ − 1 𝛽 ⋅ 𝛿𝐴

Jwhere 𝑠∗ ≡
𝑑 ln 𝒢.
𝑑 ln 𝐴

. ∗
is the “sensitivity”

13



2/22/23

6

3. Positive autoregulation

A
b[A]/a0

! solve for regime of bistability

 
GA =

f −1 + [A] / KA( )n
1+ [A] / KA( )nln GA

ln([A])

f -1

1

KA

bistability

(depends on σ, f, n )

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾. − 𝛽[𝐴]

steady state:
𝑝
𝜎
=
𝑓&' + 𝑝/

1 + 𝑝/
where 𝑝 ≡ 𝐴 /𝐾.; 𝜎 ≡ 𝛼1/ 𝛽𝐾.
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3. Positive autoregulation

A

ln GA

ln p
f -1

1

𝑝:/ = 1

use approximate form of GA ln σ

ln f

1

f 1-1/n

! bistability favored for n ≫ 1 and  f ≫1

pn

! solve for regime of bistability (depends on σ, f, n )

steady state:
𝑝
𝜎
=
𝑓&' + 𝑝/

1 + 𝑝/
where 𝑝 ≡ 𝐴 /𝐾.; 𝜎 ≡ 𝛼1/ 𝛽𝐾.

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾. − 𝛽[𝐴]
𝑝'/ = 1/f

𝑝:∗ = 𝜎

𝑝'∗ = 𝜎/𝑓

𝑝/𝜎

bistability requires  𝑝'∗ < 𝑝' and 𝑝:∗ > 𝑝:
𝑝'∗ = 𝜎/𝑓 < 𝑝' ! σ < f 1-1/n

𝑝:∗ = 𝜎 > 𝑝: ! σ > 1

15
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3. Positive autoregulation

A

use approximate form of GA ln σ

ln f

1

f 1-1/n

! bistability favored for n ≫ 1 and  f ≫1

! solve for regime of bistability (depends on σ, f, n )

steady state:
𝑝
𝜎
=
𝑓&' + 𝑝/

1 + 𝑝/
where 𝑝 ≡ 𝐴 /𝐾.; 𝜎 ≡ 𝛼1/ 𝛽𝐾.

𝑑
𝑑𝑡

𝐴 = 𝛼𝒢. 𝐴 /𝐾. − 𝛽[𝐴]

bistability requires  𝑝'∗ < 𝑝' and 𝑝:∗ > 𝑝:
𝑝'∗ = 𝜎/𝑓 < 𝑝' ! σ < f 1-1/n

𝑝:∗ = 𝜎 > 𝑝: ! σ > 1

typical parameters:  n = 2, f = 20
! 1 ≤ σ ≤ f 1-1/n ≈ 2 

(actual regime even narrower)
! need to fine tune parameters
! not robust to stochasticity, changes in 

growth conditions, or even cell cycle

exact soln
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3. Positive autoregulation

A

typical parameters:  n = 2, f = 20
! 1 ≤ σ ≤ f 1-1/n ≈ 2 

(actual regime even narrower)
! need to fine tune parameters
! not robust to stochasticity, changes in 

growth conditions, or even cell cycle

-- activator = temperature sensitive mutant of CI
-- change β (hence σ =α/(βKA)) by changing temperature 
-- get coexistence (but not bistability) in narrow parameter regime

ln σ

ln f

1

f 1-1/n

exact soln

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾. − 𝛽[𝐴]

17
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glnG

glnAp2

• use the highly cooperative
Ntr-regulon of E. coli

• use mutant controller to
insulate from cellular control

• add LacI control for tuning a0

NtrC

NtrB-con

NtrC~P

LacO LacO

! bistability (history-dependence) 
at intermediate IPTG levels

! makes use of special protein: 
-- difficult to characterize
-- affects physiology

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾. − 𝛽[𝐴]
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Auto-activation by coop stability

OA promoter gene a

𝛽' ≫ 𝛽:

rapid degradation

aGA

[A2 ] = [A1]
2 /κβ2

dilution

➡ bistability may be achieved
even with n = 1 and for small κ

(β1/2β2)2κ

slope 0.5

slope 1

KAKA/ω1/n

w

slope ≤ n

ln GA

ln([A2])w -1

1

KA

κ = 10 nM

KA [nM]

β1 = 10 β2 [A2]

[A1]

! high state dominated by dimers
(instead of useless monomers)

! bistability for a broad range of KA
(evolvable circuit)

[Buchler et al, PNAS 2005]

𝑑
𝑑𝑡

𝐴 = 𝛼1𝒢. 𝐴 /𝐾.
−(𝛽' 𝐴' + 2𝛽:[𝐴:])

𝛽' 𝜅 𝐴: + 2𝛽:[𝐴:]
steady state:
𝛼1𝒢. 𝐴 /𝐾. =

19
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4. Oscillators

• a.k.a. ring-oscillator
• uses only transcriptional repressors
(with protein degradation tags)

• modeling gives oscillation for 
sufficiently cooperative repression 

“Repressilator”

R2R3

R1

d[R1]
dt

= α1 ⋅GR1 [R3]( ) − β1 ⋅[R1]

d[R2 ]
dt

= α2 ⋅GR2 [R1]( ) − β2 ⋅[R2 ]

d[R3]
dt

= α3 ⋅GR3 [R2 ]( ) − β3 ⋅[R3]

• oscillation observed; but noise abound
• not typically seen in bacteria or euk

22

Predator-prey oscillators

RA

d[A]
dt

= α ⋅GA [A]( ) ⋅GR [R]( ) − β ⋅[A]

d[R]
dt

= α ⋅GA [A]( ) − β ⋅[R]

⎧

⎨
⎪⎪

⎩
⎪
⎪

linear stability analysis around [A]*,[R]*,  such that 
α ⋅GA [A]*( ) ⋅GR [R]*( ) = β ⋅[A]*

α ⋅GA [A]*( ) = β ⋅[R]*

⎧
⎨
⎪

⎩⎪

Im{λ}= 0                               no oscillation

Im{λ}≠ 0, Re{λ}< 0     damped oscillation

Im{λ}≠ 0, Re{λ}> 0 amplifying oscillation

⎧

⎨

⎪
⎪

⎩

⎪
⎪

then
𝑑
𝑑𝑡

𝛿𝐴
𝛿𝑅 = 𝛽

𝑠.∗ − 1 −𝑠0∗ 𝐴 ∗/ 𝑅 ∗

𝑠.∗ 𝑅 ∗/ 𝐴 ∗ −1 ⋅ 𝛿𝐴𝛿𝑅

where 𝑠.∗ = J
𝑑 ln 𝒢.
𝑑 ln 𝐴

. ∗
, 𝑠0∗ = − J

𝑑 ln 𝒢0
𝑑 ln 𝑅

0 ∗

try δ𝐴 ∼ 𝑒;- , 𝛿𝑅 ∼ 𝑒;- , get 𝜆 =
𝛽
2
𝑠.∗ − 2 ± 𝑠.∗ − 2 : − 4𝑠.∗𝑠0∗

let 𝛿𝐴 ≡ 𝐴 − 𝐴 ∗, 𝛿𝑅 ≡ 𝑅 − 𝑅 ∗

⟸ 𝑠.∗ > 2, 𝑠0∗ > 𝑠.∗ − 2 :/(4𝑠.∗)

23
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Predator-prey oscillators

RA

d[A]
dt

= α ⋅GA [A]( ) ⋅GR [R]( ) − β ⋅[A]

d[R]
dt

= α ⋅GA [A]( ) − β ⋅[R]

⎧

⎨
⎪⎪

⎩
⎪
⎪

solve for regime of oscillation:

steady-state (with σ = α / βK ,  taking KA = KR  for simplicity):

σ ⋅ [A]* / K( )nA = [R]* / K                       

σ ⋅ [A]* / K( )nA ⋅ [R]* / K( )−nR = [A]* / K

⎧

⎨
⎪

⎩
⎪

soln exist if nR > 1,  and 1< σ < min fA
1+1/[nA ⋅(nR −1)] , fR

[1+nA ⋅(nR −1)]/ nR{ }
for large nA  and nR ,  unstable (osc) regime is 1< σ < min fA , fR

nA{ }

assuming that instability occurs for sA
* ≈ nA > 2 and sR

* ≈ nR > sA / 4

then    GA ≈ [A] / KA( )nA   for   fA
−1/ nA <  [A] / KA < 1,

           GR ≈ [R] / KR( )−nR   for   fR
1/ nR > [R] / KR > 1

assuming that instability occurs for 𝑠.∗ > 2 and 𝑠0∗ > 𝑠.∗ − 2 :/(4𝑠.)

24

Predator-prey oscillators

RA

d[A]
dt

= α ⋅GA [A]( ) ⋅GR [R]( ) − β ⋅[A]

d[R]
dt

= α ⋅GA [A]( ) − β ⋅[R]

⎧

⎨
⎪⎪

⎩
⎪
⎪

for large nA  and nR ,  unstable (osc) regime is 1< σ < min fA , fR
nA{ }

phase diagram (fA = fR = 100, nA = nR = 4) 

fA

σ

oscillatory

damped
oscillation

no oscillation
[A]/KA

[R
]/K

R

stream plot

25
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• uses transcriptional activator (NtrC on σ54)
and repressors (LacI)

• population shows up to 4 cycles
• damped oscillation (LacI-CFP fusion)

Predator-prey oscillators

RA

d[R]
dt

= α R ⋅GA1
[A]
KA

⎛

⎝⎜
⎞

⎠⎟
− βR ⋅[R]

d[A]
dt

= α A ⋅GA2
[A]
KA

⎛

⎝⎜
⎞

⎠⎟
⋅GR

[A]
KR

⎛

⎝⎜
⎞

⎠⎟
− βA ⋅[A]

glnGLacONtrC~P

glnAp2

LacO

lacINtrC~P

glnKp
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Predator-prey oscillators

RA

• amplitude & period of oscillation
not determined by stability analysis

• typically period controlled by a slow step 
= relaxational oscillator

• amplitudes by binding affinities

RA

R

C+
κ

Aβ

Inert 
Dimer

Repressor 
is recycled

27
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Predator-prey oscillators

RA

• amplitude & period of oscillation
not determined by stability analysis

• typically period controlled by a slow step 
= relaxational oscillator

• amplitudes by binding affinities

activation not even
necessary!

28

Predator-prey oscillators

RA

• amplitude & period of oscillation
not determined by stability analysis

• typically period controlled by a slow step 
= relaxational oscillator

• amplitudes by binding affinities

delay in repression crucial

d[R]
dt

= α ⋅GR
[R]τ
K

⎛

⎝⎜
⎞

⎠⎟
− γ ⋅

[R]
[R]+ R0

saturated proteolysis

d[R]
dt

= −γ

linear discharge (slow)

τ
overshoot 
due to delay
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