

[Erickson, Schink, et al, Nature (2017)] Growth transition kinetics "Equation of motion" for $\gamma(t) = \nu_c \phi_c(t) / \phi_R(t)$ $\frac{d}{dt}\gamma = \gamma(t) \cdot \left[\nu_{C}\hat{\chi}_{C}(\gamma) - \gamma(t)\hat{\chi}_{R}(\gamma)\right]$ \rightarrow from soln for $\gamma(t)$, solve for $\phi_R(t)$, $\phi_C(t)$, $\lambda(t)$, M(t) \rightarrow exact solution; completely determined by λ_i , λ_i Kinetics of protein synthesis: $\phi_R \equiv M_R(t)/M(t)$ $\frac{d}{dt}M = J_P = \gamma(t)M_R = \nu_C M_C \qquad \xrightarrow{\lambda(t) \equiv \frac{d}{dt} \ln M} \qquad \xrightarrow{\phi_C \equiv M_C(t)/M_R} \lambda(t) = \gamma(t) \cdot \phi_R(t) = \nu_C \cdot \phi_C(t)$ $\phi_C \equiv M_C(t)/M(t)$ $\frac{d}{dt}M_R = \chi_R(t) J_P \longrightarrow \frac{d}{dt}\phi_R = \lambda(t) \cdot \left(\hat{\chi}_R(\gamma) - \phi_R(t)\right) \Big|_{0.8}^{1}$ $\hat{\chi}_{c}(\gamma)$ $\frac{d}{dt}M_{c} = \chi_{c}(t) J_{P} \longrightarrow \frac{d}{dt}\phi_{c} = \lambda(t) \cdot \left(\hat{\chi}_{c}(\gamma) - \phi_{c}(t)\right)$ 0.6 $\hat{\chi}_R(\gamma)$ 0.2 • coupled nonlinear ODEs for $\phi_R(t)$ and $\phi_C(t)$ 01 • <u>requires</u> regulatory functions $\chi_R(t)$ and $\chi_C(t)$ 0.2 0.4 0.6 0.8 0 \rightarrow regulation of ribosome synthesis: $\chi_R(t) = \hat{\chi}_R(\gamma(t))$ γ/γ_0 \rightarrow same form as in steady state: $\hat{\chi}_R(\gamma) = \phi_R^*(\gamma) = \phi_{R,0}/(1-\gamma/\gamma_0)$ → repeat for regulation of catabolic enzymes: $\chi_c(t) = \hat{\chi}_c(\gamma(t)) = \phi_c^*(\gamma)$

Summary quantitatively predictive behaviors despite molecular complexity • catabolite repression: not just about carbon [You et al, Nature (2013)] - why: proteome/metabolome coordination - who/how: direct inhibition of cAMP synthesis by alpha ketoacids simultaneous carbon usage [Hermsen et al, Mol Syst Biol (2015])] - increase in growth possible but cannot exceed "speed limit" - GR addition formula via common cAMP regulation (C-line) • hierarchical carbon usage [Okano et al, Nature Microb. (2019)] - strategy: supplement-as-needed - mechanism: total flux sensing (cAMP) + diff regulation of uptake enzymes - physiological function unknown (not about optimizing resource) • growth transition kinetics [Erickson, Schink et al, Nature (2017)] strategy: flux-based regulation (translation activity via ppGpp) - form of regulatory function determined from steady state growth laws - single ODE completely captures transition kinetics; no fitting parameters - quantitative link to CCR still to be worked out combination of molecular vs physiological approaches quantitative predictions & molecular mechanisms

