
Quantitative Microiology
Problem Set #3 (amended)
due: Thursday Mar 2, 2023

[The first two problems are on Lecture #9 and can be attempted right away.

Problem #3 and #4 are on Lecture #10. Problem #5 is on Lecture #12.]

1. Amplitude of gene regulation: A promoter is controlled by an activator A which binds
to a single operator site OA upstream of the core promoter. The effective dissociation
constant of A with its operator is KA = 100 nM, and the interaction between the operator-
bound activator and the RNAp is described by ω = 10. The promoter drives a gene
encoding a polypeptide X that is a subunit of a dimeric protein X2. The dimer dissocia-
tion constant of X2 is kb

kf
= κ = 10 nM, where kf and kb are the forwards and backwards

rates of dimerization. Furthermore, the monomer X, dimer X2, and mRNA m are degraded
at rate βX , βX2 , and βm respectively. Lastly, the transcription initiation rate and transla-
tion initiation rate is given by αm and αp, respectively. This situation is cartooned in Fig. 1.

Figure 1: Schematic for Q #1

In the following questions, consider the change in activator concentration to be from 1 nM
to 1000 nM:

(a) Fold-change of the mRNA level of the gene encoding X.

(b) Fold-change in the cellular concentration of X2, assuming that in the absence of the
activator, the polypeptide synthesis rate αpαm/βm is 1/min, and the proteins are di-
luted by cell growth only (with a doubling time of 60 min). You may assume that the
kinetics of dimer association and dissociation occur at much faster time scales.

(c) Fold-change in the cellular concentration of X2 if the monomers are degraded with a
half-life of 5 min while the dimers are not specifically degraded. [Note that both the
monomers and dimers are still diluted given that the cells are growing with a doubling
time of 60 min.]

2. Cross-talk in sRNA-mediated gene silencing: In this problem, we consider the effect
of a small RNA (S) negatively regulating the expression of two genes (A and B), through
binding to each mRNA species and co-degradation with the bound mRNA as described in
class. The transcription initiation rate of the small RNA is denoted by αS, and those of
the two target genes are denoted as αA and αB. Let the binding rate of the small RNA
with mRNA A be kA and that with mRNA B be kB. Let the turnover rate of each mRNA
species in the absence of the small RNA be βA and βB, and let the turnover rate of the
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small RNA in the absence of any target mRNA be βS. The turnover rates βs and the
binding rates ks are fixed genetically by sequence features of the mRNAs and the sRNA.
In contrast, the transcription initiation rates α can be varied by controlling the activities
of the respective promoters via transcription factors.

Let us first perform a qualitative analysis of this system.

(a) If gene B is not expressed, sketch the threshold-linear response of the concentration of
the mRNA A mA on the transcription rate αA, for a fixed sRNA transcription rate αS.

(b) Repeat the sketch of part (a) for αB = 0.5×αS and for αB = 2×αS if the small RNA
has much higher affinity for mRNA B than mRNA A, i.e., kB � kA.

(c) Explain in words the effect of gene B on gene A as obtained above. What would you
expect to happen if the small RNA has a much higher affinity for mRNA A rather than
mRNA B.

Now let us work out the above quantitatively.

(d) Write down the set of ODEs describing changes in the concentrations of the mRNAs,
mA and mB, and the concentration of the small RNA s. In the steady state where
d/dt of all 3 species are zero, write down the algebraic equations coupling the 3 con-
centrations.

(e) Let βA = βB = 0.1 min−1, and βS = 0.02 min−1. Let kA = 0.01 nM−1min−1 and
kB = 0.05 nM−1min−1. Solve the above equations numerically to generate a plot of
mA against αA for various levels of αB: 0, 0.2 nM/min, 0.4 nM/min, 0.6 nM/min,
0.8 nM/min, 1.0 nM/min, with alphaS fixed at 0.5 nM/min.
[Hint: First, from the steady-state condition obtain an inverse relation

between mA and s, and between mB and s. Next, exploit the co-degradation

condition to obtain a linear constraint on the concentrations mA, mB, and

s. Eliminate mA and mB to obtain a cubic equation for s in terms of the

systems parameters (αs, βs, etc). Use the exact solution of the cubic equation

to solve for the value of s for any parameter values.]

(f) Repeat part (e) with kA = 0.05 nM−1min−1 and kB = 0.01 nM−1min−1.

3. Genetic toggle switch: Suppose there are two genes r1 and r2 on the chromosome,
under the control of promoters P1 and P2 respectively. r1 encodes a repressor R1, which
binds to the promoter P2 and interferes with the transcription of r2. Similarly, r2 encodes
a repressor R2, which binds to the promoter P1 and interferes with the transcription of r1.
Both repressors are stable, i.e., not subjected to proteolysis.

(a) Write down two coupled ODEs describing the dynamics of the concentrations of the two
repressors, R1 and R2, as specified by this genetic circuit for cells growing exponentially
at rate λ. Let the rate of synthesis of R1 be α10 · G1(R2) and the rate of synthesis of R2

be α20 · G2(R1), where the repression functions G1 and G2 are defined relative to their
respective maximum, such that α10 is the synthesis rate of R1 in the absence of R2 and
α20 is the synthesis rate of R2 in the absence of R1.

(b) You are given that in the absence of R1, the steady state level of R2 is R20, and in
the absence of R2, the steady state level of R1 is R10. Write down the two conditions
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satisfied by the steady state solutions R∗1 and R∗2 in terms of G1,2 and R10, R20. Suppose
the binding of repressor Ri to its respective site is described by the same dissociation
constant K and with the same Hill coefficient n = 2. Further suppose there is no leaky
transcription when the promoters are highly repressed. Write down the two algebraic
equations satisfied by R∗1 and R∗2.

(c) Solve the above system graphically: make log-log plot of the relation between R∗1
and R∗2 corresponding to the condition dR1/dt = 0; make another log-log plot of the
relation between R∗1 and R∗2 corresponding to the condition dR2/dt = 0. How would
you combine the two conditions together graphically given that R∗1 and R∗2 satisfy both
conditions? Make a sketch for each of the following three scenarios: (i) one solution
only for R∗1 ≈ R10 and small R∗2; (ii) one solution only for R∗20 and small R∗1; (iii) three
solutions including a nontrivial one with both R∗1 and R∗2 not small. In the latter case,
explain qualitatively the stability of each solution and note the one giving “bistability”.

(d) Approximating the functions G1,2 by piece-wise linear functions in log-log space (as de-
scribed in class) to estimate the approximate parameter regime for which the system is
expected to exhibit bistability. Plot the “phase diagram”, i.e., the regime of bistability,
in the space (R10/K,R20/K).

(e) For the same cells growing at a different rate (due to different growth media), what
parameters in the phase diagram are changed? Re-plot the phase diagram for cells
growing in media with 3x faster and 3x slower growth rate. Indicate on the phase
diagram the regime for which bistability is expected to exist for all three growth me-
dia. Compare the above to the auto-activator discussed in class and comment on the
robustness of behaviors for the two different designs. [You can just take the phase
boundaries derived in class for the auto-activator and sketch qualitatively what would
happen if the growth rate is increased or decreased 3x.]

You do not need to attempt the last part of this problem (below) if you have not had
a course covering linear stability analysis. However, the only math you need is ODE
and linear algebra, and you can teach yourself this very important analysis tool by
following the procedure outlined below.

(f) Consider the general system as formulated in part (a), it is possible to derive analyti-
cally the criterion for the stability of any fixed point. Suppose there is a steady state
given by the fixed point (R∗1, R

∗
2). Perform a linear stability analysis as follows:

• Write down the two conditions satisfied by R∗1 and R∗2 for general repression func-
tions G1(R2) and G2(R1), by setting dR1/dt and dR2/dt to zero.

• For small deviation from the fixed point, i.e., for R1(t) = R∗1 + δR1(t) and R2(t) =
R∗2 + δR2(t) where |δR1,2| � R∗1,2, substitute R1,2(t) into the ODEs in (a) and
expand to leading order in δR1,2. You can write the resulting ODEs for δR1,2 in
the matrix form

d

dt

[
δR1(t)
δR2(t)

]
=

[
M1,1 M1,2

M2,1 M2,2

]
·
[
δR1(t)
δR2(t)

]
(1)

where Mi,j are the elements of the matrixM. By using the steady state conditions
worked out above, you can express the matrix elements Mi,j in terms of the time
scale λ and the sensitivities, s1 ≡ d lnG2

d lnR1
and s2 ≡ d lnG1

d lnR2
, evaluated at the fixed

point R∗1 and R∗2.
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• Find the eigenvalues of the matrix M. Negative eigenvalue implies that small
deviation decreases in time, i.e., the fixed point is stable, while posiive eigenvalue
implies that small deviation decreases in time, i.e., the fixed point is unstable. The
criterion for instability is if either of the eigenvalue is positive.

• Find the stability criterion in terms of s1 and s2, and explain what this means in
term of the graphical solution constructed above. Compare this solution to the one
discussed in class for the auto-activator and explain why it is more stable.

4. Threshold response of an inducible auto-activator A transcription factor (TF) A
activates the transcription of a gene g, which codes for a protein G. As a result the rate
with which G is produced depends on the concentration [A] of A as α G([A]). Here α is the
maximum protein synthesis rate, and G([A]) is the regulation function

G([A]) =
ε+ [A]/K

1 + [A]/K

where K is the equilibrium dissociation constant for the TF-DNA binding and ε represents
a basal leakage term. The protein G is degraded at a rate β. [For simplicity assume the

volume of cell is constant (= 1 in suitable unit), so that you don’t need to

distinguish between protein concentration and the number of proteins per cell.]

(a) Write down the deterministic rate equation describing the dynamics of the product
[G]. What is the equilibrium value of [G] given [A]?

(b) Now consider the case where [G] actually activates its own gene (so that A and G are
now one and the same protein). Write down the differential equation for the concen-
tration [G] and calculate its equilibrium value.

(c) Next we assume that G can activate the transcription of its own gene only if it is bound
to some small molecule L (a ligand). We refer to the concentration of G not bound
to L as [G], to the concentration of G bound to a ligand as [GL], and call the total
concentration [Gtot] = [G] + [GL].

• What is the equilibrium value of [Gtot] if [L] = 0?

• What is it if [L] is very large?

• Explain in words why this circuit can be considered a cellular sensor for the con-
centration of the ligand.

(d) We define r = [GL]/[Gtot], i.e., r is the fraction of G proteins bound to a ligand.

• Write down the differential equation for [Gtot].

• Assume for simplicity that ε is negligible. What is the equilibrium concentration of
[Gtot] as a function of r? Sketch a plot of [Gtot] as a function of r (You can assume
that K < α/β). Some reasonable parameters would be α/β ≈ 90 nM and K ≈ 30
nM.

• Explain in words why the behavior of the circuit as a function of the ligand con-
centration can be called a “threshold response”.
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• Now assume that ε is not negligible, but nevertheless small: ε=0.05. Sketch another
plot of [Gtot] as a function of r. If a strict threshold response is desired, what value
should ε have?

5. Uptake vs de novo synthesis of amino acid. An amino acid a can be taken up by the
transporter T if it is available in the environment or it can be synthesized de novo by a
series of enzymes collectively referred to as E. It is advantageous for the cell to synthesize
the transporter instead of the enzyme E when a is available from the environment because
synthesizing E costs a lot more than synthesizing T . In this problem, you will investigate
a simple regulatory strategy that allows the cell to synthesize the enzyme E only when
needed, i.e., when the external concentration of amino acid [a]ext is low.

Let the specific rate of uptake by the transporter be kT , and specific rate of synthesis by
the enzyme be kE. Then changes in the cellular concentration of the amino acid, [a], can
be described by

d[a]

dt
= kT · [T ] + kE · [E]− j, (2)

where j is the flux of a demanded by cell growth and is proportional to the growth rate.
The uptake rate kT itself depends on the external concentration of a as will be specified
below.

(a) Both the transporter and enzyme concentrations are regulated by a common regulatory
scheme called “end-product inhibition”, with

[T ] = T0
1 + ([a]/KT )n

1 + f · ([a]/KT )n
, (3)

and

[E] = E0
1 + ([a]/KE)n

1 + f · ([a]/KE)n
. (4)

For simplicity, we use here regulatory functions with the same capacity f � 1 and Hill
coefficient n→∞. Sketch (by hand) the dependence of [T ] and [E] on [a] and explain
the meanings of the parameters T0, KT , E0, and KE.

(b) For KT < KE, sketch the dependence of the concentrations [T ], [E], and [a] on the
flux demand, j. (You can take the steady state where d[a]/dt = 0.) Find an expression
for the critical value of the flux at which the enzyme E is ’turned on’? How does this
critical value depend on the values of KT , KE, and f? What happens for KE < KT ?

(c) In part (b) above, you will notice that there is no solution for very small and very large
values of j. Write down the lower and upper limit in terms of the model parameters,
and explain what “goes wrong” in each case. Show how the problem at small-j end
disappears if n is taken to be finite.

(d) The specific uptake rate depends on the external concentration of a via the standard
Michaelis-Menton form,

kT = kT,max
[a]ext

[a]ext +Ka

, (5)

where kT,max is the maximal uptake rate for saturating concentration of a, and Ka is
the half-saturation constant for the transporter. Sketch the dependence of the con-
centrations [T ], [E], and [a] on the external concentration [a]ext for a fixed value of
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the demand flux j. What is the critical concentration of external a below which the
enzyme E is ’turned on’? Describe or sketch qualitatively how the dependences of [T ],
[E], and [a] on [a]ext would change if n has a finite value, e.g., n = 2?
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