
Quantitative Microbiology
Problem Set #4

due: Tuesday, March 14, 2023

[Problem #1 and #3 should be quite straightforward and will be weighted less.

Main effort in this Problem Set should be devoted to Problem #2.]

1. Growth in continuous culture. The idea of a continuous culture setup is to allow a
permanent and steady growth of bacteria by continously (i) supply a growth chamber with
fresh medium, and (ii) take away excess liquid, bacteria, and waste products. The simplest
setup is depicted in the following.

Here a constant input flow (flow rate f in Volume per time) of fresh medium with input
nutrient concentration [S]in equals a constant output flow of medium. The volume V within
the growth chamber is fixed and the medium chamber is well mixed and well-aerated. Such
a setup ha been proposed most famously by Monod (his bactogène) as well as by Novick
and Szilard (their chemostat) already in 1950. Nowadays, the term chemostat is mostly
used.

To understand the robustness of this setup, possible applications and problems, we study
the coupled dynamics of bacterial growth and substrate kinetics within this chemostat in the
following.

(a) Suppose you start the chemostat with a certain density of bacteria ρ0. Write down an
ODE describing the dynamics of the bacterial density ρ(t) by considering the growth
and outflow of bacteria over time. Show that the specific growth rate λ = D, with
D = f/V defined as the dilution rate, is a possible steady state of the chemostat.

This behavior is remarkable as it allows to precisely control the growth rate simply by the
dilution rate, without for example having to control the substrate concentration. However,
we have to consider if this possible steady state is really taken by the system, and if it is
in agreement with the Monod kinetics (below).

The Monod growth law.
Monod observed empirically that the bacterial growth rate depends hyperbolically on the
substrate concentration [S] as:

λ([S]) = λ∞
[S]

[S] +KM

. (1)
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It is also known that the depletion of nutrients is linked to the growth of cells by,

d[S]

dt
= −λρ/Y, (2)

where ρ denotes the density of bacteria, and Y is the yield factor.

For E. coli cells growing in well aerated conditions in a minimal media with glucose as the
growth limiting nutrient, we can use Y = 0.5 g cell biomass/g glucose, KM = 10µM , and
a maximal growth rate (λ∞) of 1/hr.

(b) Consider the substrate dynamics in the chemostat and determine the concentration
[S]∗ and the bacterial density ρ∗ at the steady state where dρ/dt = 0 and d[S]/dt =
0. Assume the coupling between substrate and growth dynamics is given by Monod
kinetics, Eqs. (1) and (2). Plot the result for varying dilution rate and the glucose
input concentrations [S]in = {0.05%, 0.1%, 0.2%}. What is the maximum dilution rate
Dmax below which the chemostat is not washed out but a steady and finite bacterial
concentration is reached?

(c) Argue that the steady state solution derived before is the only stable steady state of the
system and that the system reaches this state when starting with an arbitrary initial
state. How does the system evolves if you for example start with a very low bacterial
concentration ρ?

2. Proteome allocation and Monod’s growth law: In this problem, we will work out
key elements of the proteome allocation analysis for bacterial growth step-by-step using a
concrete example, growth of E. coli cells on lactose. With a few assumptions, we will derive
Monod’s growth law introduced in problem # 1.

In the following, all quantities correspond to amount derived from a 1-mL of culture at
optical density (OD) = 1, referred to as “OD·mL” in short. 1 OD·mL of culture corresponds
to 108 ∼ 109 bacterial cells in typical culturing conditions. We will refrain from using per
cell quantity because the amount per cell can vary 10x due to change of cell size in different
conditions. Instead, amount per OD·mL is more invariant. In particular, total dry mass
contained in 1 OD ·mL of culture is approx 0.5 mg and total cytoplasmic water contained
in 1 OD · mL of culture is approximately 1 mg (or 1µL in volume) for almost all growth
conditions characterized. The total protein content in OD · mL varies moderately, from
0.3 mg (at fast growth) to 0.4 mg (at slow growth). For simplicity, we will take total
protein per OD·mL to be 0.35 mg.

Definition of symbols to be used below: Ni and Mi are, respectively, the number and mass
of protein i per OD·mL of culture. M ≈ 0.35 mg is the total mass of cellular proteins per
OD·mL of culture. mi is the molecular weight of protein i. φi ≡Mi/M is the mass fraction
of protein i among all cellular proteins; it is also referred to as the “proteome fraction”.

(a) Conversion between proteome fraction and concentration: The average intracellular
concentration of a protein X, [X], can be taken as the number of proteins in OD ·
mL of culture, NX , divided by the total cytoplasmic water volume in OD · mL of
culture, V . For a protein with molecular weight mX , derive a relation between its
concentration [X] and its proteome fraction φX . If the protein is 300 aa in length
(typical of many proteins), find its concentration in µM if its proteome fraction is 1h
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(part per thousand).
[Hint: It will be useful to convert the total protein abundance

M = 0.35 mg/(OD ·mL) into “no. of aa per OD·mL ”, using the average mass

of an amino acid, 110 Daltons.]

Note: In the problems below, we will only refer to protein concentration in term
of proteome fraction. It turns out that proteome fraction is more readily obtained
experimentally (e.g., by proteomics and ribosome-profiling); it is also a more natural
quantity to work with in models. The purpose of part (a) of this problem is to let you
know that you can always convert proteome fraction to a more familiar concentration
unit, e.g., µM .

(b) Protein synthesis flux: Let JR denote the flux of protein synthesis, in unit of no. of aa
polymerized per OD·mL of culture per time. For a culture growing exponentially at
rate λ, this is just λ·M (with the total protein mass M in #aa/(OD·mL)). Molecularly,
protein synthesis flux can be written as the product of the ribosome elongation rate
(denoted as ε) and NR, the total number of ribosomes per OD·mL of culture. [Here we
will assume that all ribosomes are engaged in translation and work at the same speed.
This turns out to be a reasonably good approximation as long as the growth rate is
not too slow.]

• Show that the above leads to the growth law

λ = γ · φR, (3)

where φR ≡ MR/M is the proteome fraction of ribosomal proteins, MR being the
total mass of r-proteins per OD·mL of culture. Express γ in terms of ε and mR,
the molecular weight of all r-proteins in a ribosome.

• Adding up the length of all r-proteins in a ribosomes gives 7336aa. However, for
a ribosomes to do its job, many helper proteins such as elongation factors are also
needed. These proteins add up to another 60% in mass. Thus, we can take the
“molecular weight” of an effective ribosome as mR = 1.6 × 7336aa. Further using
ε = 16aa/s, find the value of γ in unit of h−1.

• Explain why γ is an upper bound on the growth rate attainable. What is the
corresponding doubling time? The fastest doubling time for E. coli is 20 min, when
the culture is supplemented with many nutrient ingredients including all amino
acids, nucleotides, and vitamins. What is the corresponding ribosomal fraction φR

at this fastest growth rate? The remaining fraction of the proteome, called φQ, are
comprised of obligatory proteins needed for house-keeping functions, e.g., synthesis
of the lipid membrane and cell wall.

(c) Carbon uptake flux: Consider growth of E. coli in minimal medium with a single
substrate as a carbon source, without supplement of amino acid and other substances.
Let JC denote the flux of carbon uptake, in unit of no. of substrate molecules taken up
per time per OD·mL . Molecularly, this can be written as a product of kE, the turnover
rate of the uptake enzyme, and NE, the number of enzymes per OD·mL of culture.

• Express JC in term of the proteome fraction of the uptake enzyme, φE ≡ ME/M
and the molecular weight of enzyme E, mE.
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• The condition of flux balance can be stated as JR = c · JC , where the coefficient
c represents the conversion factor from the substrate molecule to aa. Using flux
balance, and the expression you obtained above for JR and JC , derive the relation
λ = νE ·φE and find an expression for νE in terms of the parameters for the enzyme
(kE, mE) and the coefficient c.

• Consider the case where lactose is the sole carbon substrate. 1 g of lactose is known
to yield 0.5 g of dry mass. Based on the protein:dry mass ratio given above, work
out the conversion factor c for lactose.

• Given that the turnover rate for the lactose transporter (LacY, the lac permease),
is kY = 3/s, and the molecular weight of LacY is mY = 417 aa, work out the value
of νE for lactose uptake (called νY ) in unit of h−1.

(d) The lactose transporter is one of a suite of “carbon catabolic proteins” expressed when
E. coli is short of carbon supply. The other proteins include beta-galactosidase (LacZ)
which degrades lactose into glucose and galactose, and other enzymes not specific to
lactose degradation. Let the proteome fraction of all these carbon catabolic proteins be
φC . Since the expression of LacY is co-regulated with these proteins (by cAMP-CRP),
φE is a fixed fraction of φC . Suppose φE = αY φC , with αY < 1 being a fixed portion,
we can write

λ = νC · φC , (4)

where νC = αY νY if LacY is the bottleneck of lactose uptake.

For cells grown in minimal medium without the supplement of amino acids, etc, another
significant fraction of the proteome is comprised of anabolic proteins (i.e., enzymes for
biosynthesis of amino acids, etc.) Let the proteome fraction of all these enzymes be
φA. There is a linear relation between the growth rate λ and φA similar to Eqs. (3)
and (4):

λ = νA · φA. (5)

It turns out that νA ≈ γ.

Finally, there is the constraint that sum of all proteome fractions add up to 1, i.e.,

φR + φC + φA = φmax, (6)

where φmax = 1−φQ, φQ being is the same fraction of obligatory proteins encountered
in part (b).

• Combine Eqs. (3)-(6) to show that the growth rate depends on the parameter νC
(a measure of “nutrient quality”) as

λ = λC
νC

νC +KC

. (7)

Express λC and KC in terms of γ and φmax.

• For an “infinitely good” carbon source for which νC →∞, what is the growth rate?

• For E. coli growing on lactose, the growth rate is found to be approximately 1/h.
Find the corresponding value of νC . Find the proteome fraction φR, φC , and φA

devoted to ribosomal, catabolic, and anabolic enzymes during growth on lactose.
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• Based on the value of νY you calculated in part (c), what share of catabolic proteins
is LacY? What fraction of the entire proteome is LacY?

(e) Next, let us consider the equilibration of lactose within the cytoplasm. As stated
above, the influx of lactose is given by kY · NY . The lactose brought into the cell is
degraded by LacZ. The lactose degradation flux is kZ · NZ [L]in/([L]in + KZ), where
[L]in is the intracellular lactose concentration, kZ and KZ are the turnover rate and
binding constant of beta-galactosidase for lactose, and NZ is the number of enzymes.
To keep the intracelllular lactose concentration at the level of KZ , how much LacZ
must be expressed? i.e., what is the proteome fraction φZ for LacZ? What is the share
of catabolic proteins do LacY and LacZ together comprise of?

[Properties of beta-galactosidase you need to know: kZ = 60/s, molecular

weight mZ = 4100 aa (since LacZ has the length of 1024 aa, and functional

enzyme is comprised of a LacZ tetramer).]

(f) Finally, we derive the Monod law relating the growth rate at different substrate con-
centrations in the medium. Let the lactose concentration in the medium be [L]. Then,
the lactose turnover rate per LacY becomes

kY ([L]) = k∞Y
[L]

[L] +KY

(8)

where k∞Y = 3/s is the saturated turnover rate used above, and KY is the binding
constant of lactose to LacY. Express νC in terms of kY ([L]) and use it in Eq. (8) in
Eq. (7) to derive Monod’s growth law:

λ([L]) = λ∞
[L]

[L] +KM

. (9)

Express the Monod constant KM in terms of KY and the basic parameters of the
growth laws in Eqs. (3)-(5). Find the value of the Monod constant if KY = 0.3 mM .
Can you explain why the Monod constant, which describes the lactose concentration at
which the growth rate is half of the maximum value, is much smaller than the binding
constant KY ?

3. Effect of antibiotics on cell growth: Bacteriostatic antibiotics slows down cell growth
by interfering with a spectrum of bacteria-specific functions without killing cells. The drug
efficacy can be quantified by the IC50 value, which is the concentration that slows down
growth by 50%. In this problem, we will compute IC50 for antibiotics which targets protein
synthesis using the bacterial growth laws you learned in class.

Let the fraction of proteome devoted to translational, catabolic, and anabolic processes be
φR, φC , and φA, respectively. As we learned in Problem #2, flux balance conditions lead to
simple linear relations between the growth rate λ and each of these 3 proteome fractions;
see Eqs. (3) – (5), with the macroscopic parameters γ, νC and νA related to molecular
parameters. The 3 proteome fractions are also constrained by (6).

(a) By eliminating φR, φC , and φA in each the of the relations (3) – (5), find the growth
rate λ as a function of γ, νC , νA, and φmax.
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A large class of antibiotics target the ribosome, and the effect of a good number of them
can be described as slowing down the translational process. We can model the effect
of a sublethal dose of such translation-retarding drugs by a reduction in the ribosome’s
elongation rate, which would result in a reduction in the parameter γ; see Problem #2b.
Let the value of γ in the absence of drugs be γ0 (whose value was obtained in Problem
#2b). [Note that the meaning of γ and γ0 here are different from those in the lecture notes.]
Let the growth rate in the absence of drug be λ0. For different carbon sources (different
values of νC), the growth rate varies as λ0(νC).

(b) Suppose the antibiotics binds to the ribosome with a dissociation constant KD and
reduces γ as described below:

γ =
γ0

1 + [D]/KD

where [D] is the drug concentration. Show that the growth rate depends on drug
concentration as

λ =
λ0

1 + [D]/KI

.

Find the IC50 value, KI , in terms of the dissociation constant KD and the ratio of the
drug-free growth rate λ0(νC) and the maximum drug-free growth rate λ0(νC →∞) ≡
λC .

(c) Rewrite your result in part (b) in terms of the doubling time T in the presence of
drug, and the doubling time T0 in the absence of drugs. For a drug with a disso-
ciation constant KD = 5 µM , plot the doubling time T vs drug concentration [D]
in 3 different growth medium, with carbon sources that support doubling time of
T0 = 60min, 90min, 120min, respectively in the absence of the drug. Indicate the value
of KI on the plot for each case. Explain qualitatively why the IC50 value should depend
on the quality of the nutrient (νC), as manifested by its dependence on the drug-free
growth rate λ0(νC).
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