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What is quantitative biology?
= quantitative biology # biology + numbers/equations

# application of quant tools to bio
=>» use numbers to gain predictive understanding of living systems
Why quantitative biology?
* because biology is quantitative
* needed to formulate and test falsifiable predictions
» demanded by synthetic biology
Role of theory

 formulate expectation and predictions (via quantitative model)

* guide the design of new experiments and technology

» power: the generality of (falsifiable) ideas, not necessarily math
[e.g., Cupernicus, Darwin, Einstein]

» “cost” : the simplifying assumptions, not necessarily forced by math,
but required in order to reveal principles

=» This course: quantitative (molecular) microbiology



https://matisse.ucsd.edu/courses/w23-quant-microb/

++ Life of a bacterium: matter + energy = biomass

TABLE 1. Typical elemental composition of biological specimen

Mass fraction in the following cells

Tissue? Bacteria?
C 0.50 0.47
N 0.16 0.14
H 0.07 0.06
(0] 0.25 0.23
P + S + others 0.02 0.10¢

[Heldal et al, 1985]

e molar composition: CH; 504 35Ng24 (+S, P, Mg, Fe, ...)
 algae (photosynthesis):
CO, + H,O + N, + photons =» biomass + O,

* E. coli (minimal medium):
glucose + NH; =» biomass + CO,

growth of E. coli Can we predict GR & yield?
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Learning from the growth curve
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What does it take to replicate a cell?

biomass
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protein = defined sequence of 20 amino acids
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>85% of all RNA
up to 1/3 of all proteins

protein = defined sequence of 20 amino acids

:
..................... e
tRNA ONIIN e

base-pairing ' Ss2
>85% of all RNA o ploLieLieL ()
up to 1/3 of all proteins mANA




protein = defined sequence of 20 amino acids

folding of protein

protein synthesis: ribosomes S

C-terminal

folded domaln
N-terminal N
domain

growing
polypeptide
chain.

= amino acids & ATP \

from metabolic reactions

free AA & uncharged tRNAs

+»» metabolism + biosynthesis

. sequester & breakdown nutrients (“precursors” to “building blocks”)
- — amino acid
- — nucleic acid
_ — lipids
or ‘co-factor’)
glucose (6C) , isozymes
H \H)L u
glycolysis - X ATP
2X pyruvate NADPH\
C-H bond o 2x e IIvC
to & TMDH 2x pyruvate (3C) NADP*‘/,,
respiration fermentation G OHC")
32x ATP 4= —> 8x ATP " .
=P 0-C=0 O=< }\ WLl
6x CO, o aKG Glu HO0 §
(need 0,) 2x acetate + 2x CO» /LA/TL 5 , OH
oH 9}
= but many organisms use fermentation Ha IVE
even with oxygen (Crabtree effect); why? valine
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o meta bo | | sm METABOLIC PATHWAYS

» sequester & breakdown nutrients
— derive energy

— generate carbgg Meabiion

— sequester N, Stals “_]
 biosynthesis of building blocks J .{_3

— amino acid

— nucleic acid 0\'\6“\ Carbobyirae

~ lipids O ]

— co-enzymes Liid Ocher Avmio ekl
¢ degradation/recycling (e.g., mMRNA) o
« typical biochemical reaction:

S+Ceb2Seb+C
S: substrate —

. _
b: component (e.g., CHs, NHy, €7)

C: co-enzyme &N

(needed for difficult reactions)

= most reactions catalyzed by enzymes (proteins)
=> flux of the products and “by-products” need to be balanced

metabolic control via coordinated regulation of enzyme abundance/activity
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protein = defined sequence of 20 amino acids
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protein synthesis: ribosomes
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protein = defined sequence of 20 amino acids

release from ribosome

protein synthesis: ribosomes = %

N-terminal

< parameter
= explosion

= ) HO—a 0. _LOH
_ | . glucose
~100 variables ~500 enzymes A T (6C)
~500 parameters ~500 metabolites

~5000 parameters

regulation: when and how much proteins to make

dependence on temp, pH, osmolarity,
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How to deal with exploding no. of parameters?
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ﬁi(t = 0) = ..
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How to deal with exploding no. of parameters?
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Molecular/Cell Biology| —)> Physiology

imension
reduction

Quantitative Systems Biology
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Molecular/Cell Biology| —> Physiology

imension
reduction

Quantitative Systems Biology

This course: explore cellular strategies of

dimension reduction using bacterial mechanisms
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Molecular aspect: Central Dogma + regulation

amino acids, NTP, lipids, ... Sl\lul_ti;:r,o2
metabolism !
ribosomal structural
proteins proteins
y | enzymes | | transporters |
DNA el
transcription .
translation | regulators | IRNAp | | DNAp|
replication

how does it all work together?
what can it be predictively manipulated?
what parameters are needed?
tsx initiation control by transcription factors (TF)
+ tslinitiation control by sSRNA and RNA-binding proteins
* tsx termination control by sRNA and anti-terminators environmental

+ control of mMRNA and protein degradation signals; coord
« control of enzyme activity by metabolites growth program

coupled to
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molecular biology of transcription (RNA synthesis)

. =
ving — >
) - g
5 A
'
" ) =
e — - -
v (= ,: —:
— .
RNA

21

10



transcriptional initiation control

» modulation of RNAp-promoter affinity
via activators and repressors

a oo O no transcription
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—_— l of transcription )R - L — gft:ﬁl\:ﬁﬁ
) ) — U P

activator operator
binding site promoter :

=> net result: rate of transcriptional initiation dependent on
cellular conc of activators and repressors
controlled by metabolites and signaling molecules
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» A grand challenge of Systems Biology

— map out the complete wiring diagram of the cell
— predictive computational model of the cell
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circuit diagram supplemented by
component parameters provides a
concise quantitative description of
the system
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circuit topology not necessarily
predictive of system function;
need to know the properties of
the nodes; parameter explosion

&

Gem (abo)

Notch Urlg

]

GataC (oral)

Not )

o
ﬂll\nm-cllv
[
|

i '
electronic circuits genetic circuits
simple & well-characterized; heterogeneous, most rates unknown;
components many (~10°); fast (10-° sec) few (~1000); slow ( >10 min)
hysical interconnect between : 0
connectivity \F/)vexlll-insulated components multlply-conne_cted (1~10 inputs per
(1~2 inputs per node) node); regulation at all stages
network iterated cascades from combinatorial signal integration from
complexity | complex network wiring complex molecular control
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of the cell
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scope of this course
« focus on simple systems (bacterial gene regulation)
« role of theory, modeling, and computation
* coarse-grained description at multiple scales (telescoped description)
 quantitative connections between molecular mechanisms
and physiological (functional or behavioral) characteristics
» power of functional and mechanistic constraints

Course content
— molecular interactions: ligand-protein, protein-DNA, and protein-protein
— transcriptional control: activation, repression, and combinatorial
— modeling genetic circuits: bi-stability, oscillation, and stochasticity
— post-transcriptional control and functional enhancement
— from molecular interaction to cell physiology
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