


# transcriptional initiation control

 modulation of RNAp-promoter affinity via activators and repressors



→ net result: rate of transcriptional initiation dependent on cellular conc of activators and repressors controlled by metabolites and signaling molecules

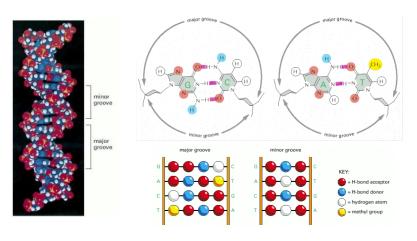
# **Topic 1: Protein-DNA Interaction**

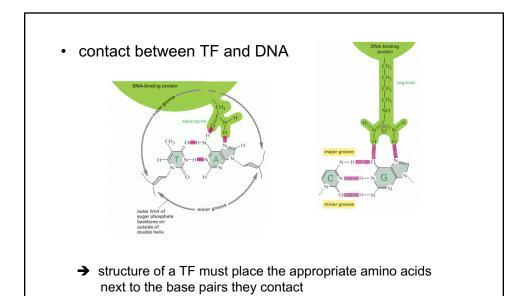
#### Goals:

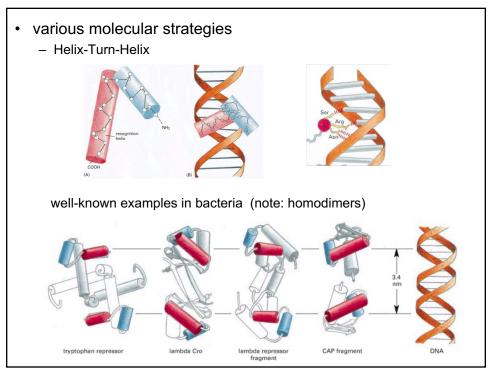
- find DNA binding target seqs for each transcription factor (TF)
- find the affinity of a TF to its DNA target as a function of its cellular concentration in vivo
- find how the TF-DNA affinity depends on the target sequence
- → at what TF conc is each target sequence occupied

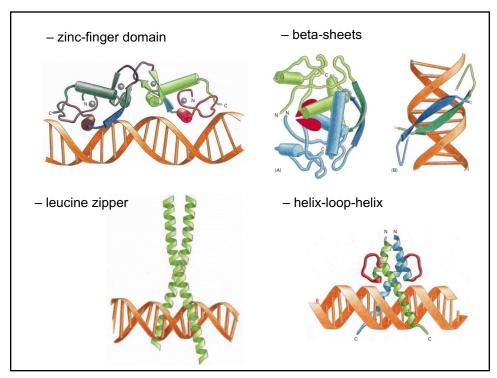
#### · Problems:

- thousands of TFs each with distinct target sequences;
   only a few characterized in detail experimentally
- ab initio molecular calculation difficult even when TF-DNA cocrystal structure available
- need to deal with the entire genomic DNA seq in vivo


#### Statistical physics:


- → ways to think quantitatively about TF-DNA interaction in the absence of detailed microscopic information
- → link from molecule to function (an illustrative case)


3


## A. Empirical facts

- 1. Transcription Factors
  - size: ~5nm (10-20 bp)
  - molecular basis of sequence recognition









## 2. DNA binding sequences

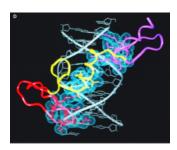
• typically 10-20 bp in bacteria

| protein       | target sequence                                      |  |  |  |  |
|---------------|------------------------------------------------------|--|--|--|--|
| lac repressor | 5' AATTGTGAGCGGATAACAATT<br>3' TTAACACTCGCCTATTGTTAA |  |  |  |  |
| CRP           | TGTGAGTTAGCTCACT<br>ACACTCAATCGAGTGA                 |  |  |  |  |
| λ repressor   | TATCACCGCCAGAGGTA<br>ATAGTGGCGGTCTCCAT               |  |  |  |  |

- lots of sequence variants
- consensus sequence often <u>palindromic</u>
- common to have 2~3 mismatches from the core consensus sequence
  - -- "fuzzy" binding motif

ATTCTGTAACAGAGATCACACAAA CCTTTGTGATCGCTTTCACGGAGC AAAACGTGATCAACCCCTCAATTT AACTTGTGGATAAAATCACGGTCT GTTTTGTTACCTGCCTCTAACTTT TTAATTTGAAAATTGGAATATCCA AATTTGCGATGCGTCGCGCATTTT TTAATGAGATTCAGATCACATATA **AATGTGTGC**GGCAATTCACATTTA GAAACGTGATTTCATGCGTCATTT AAATGACGCATGAAATCACGTTTC TTGCTGTGACTCGATTCACGAAGT TTTTTGTGGCCTGCTTCAAACTTT GAATTGTGACACAGTGCAAATTCA **ATAATGTTATACATATCACTCTAA** CGATTGTGATTCGATTCACATTTA GTTTTGTGATGGCTATTAGAAATT GAACTGTGAAACGAAACATATTTT AATGTGTGTAAACGTGAACGCAAT TTTGTGTGATCTCTGTTACAGAAT GTAATGTGGAGATGCGCACATAAA TTTTTGCAAGCAACATCACGAAAT TTAATGTGAGTTAGCTCACTCATT ATTATTTGCACGGCGTCACACTTT ATTATTTGAACCAGATCGCATTAC TAATTGTGATGTGTATCGAAGTGT ....TGTGA.....TCACA....

#### 3. TF-DNA interaction


- passive (no energy consumption)
- strong electrostatic attraction independent of binding seq e.g.  $[TF DNA] > 10 \times [TF]_{free}$  for Lacl in 0.1M salt
  - ⇒ non-specific binding:  $G_{ns} G_{cyto} \simeq -15kT$ (  $kT \approx 0.62$  kcal/mole at 37°C)
- additional energy gained from hydrogen bonds to preferred sequences



• graded increase in binding energy for sequences with partial match to the preferred sequence

۵

· relative binding affinity for Mnt



binding energy matrix

|      |          |     | (in unit of kT $\approx$ 0.6 kcal/mole)       12     13     14     15     16     17       1.6     1.0     0     2.1     0.8     1.1       4.2     2.1     0.3     0     0     0       0     0     1.2     3.2     1.0     1.2       2.2     2.2     0.6     2.2     0.7     0.3 |     |     |     |     |     |
|------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|
| pos. | 10       | 11  | 12                                                                                                                                                                                                                                                                              | 13  | 14  | 15  | 16  | 17  |
| A    | 1.8      | 2.4 | 1.6                                                                                                                                                                                                                                                                             | 1.0 | 0   | 2.1 | 0.8 | 1.1 |
| C    | $^{2.4}$ | 1.9 | 4.2                                                                                                                                                                                                                                                                             | 2.1 | 0.3 | 0   | 0   | 0   |
| G    | 0        | 1.6 | 0                                                                                                                                                                                                                                                                               | 0   | 1.2 | 3.2 | 1.0 | 1.2 |
| T    | 3.0      | 0   | 2.2                                                                                                                                                                                                                                                                             | 2.2 | 0.6 | 2.2 | 0.7 | 0.3 |

(D.S. Fields, Y. He, A. Al-Uzri & G. Stormo, 1997) (from competitive binding expts)

- → weak energetic preference -- weak specificity
- $\rightarrow$  similar results for other TFs studied (e.g., Lacl,  $\lambda$ -CI,  $\lambda$ -Cro)
- double mutation: binding energy approx additive
- → Can we say something generic about the design of TF-DNA interaction from these facts/data?

- Issues to be addressed here:
  - range of TF-DNA affinity in vivo
  - dependence of this affinity on variation in target sequence
  - why weak specificity of TF-DNA interaction? ["design rule" for TF]
  - why fuzzy motifs [choice of DNA targets]
- Issues not addressed:
  - what is the target sequence of a given TF [can be probed experimentally]
  - fluctuations in TF-DNA binding

## B. Thermodynamics of DNA target recognition

- binding sequence (L nt):
- TF: N<sub>P</sub>/cell

cell vol: few um3  $1/V_{cell} \sim 1 \text{ nM}$ 

$$S = \{b_1, b_2, ..., b_L\}, \quad b_i \in \{A, C, G, T\} \quad [P]_{tot} = N_P / V_{cell}$$

• dissociation constant (in vitro) • fraction of sequence bound:

$$K(S) \equiv [P] \cdot [S]/[P \cdot S]$$

$$\propto e^{G(S)/kT}$$

$$f(S) = \frac{[P \cdot S]}{[S] + [P \cdot S]} = \frac{[P]}{[P] + K(S)}$$
$$[P]_{tot} \qquad \text{if } [S] = \emptyset$$

• approx. additive binding free energy  $\approx \frac{[P]_{tot}}{[P]_{tot} + K(S)} \quad \text{if } [S]_{tot} \ll [P]_{tot}$ 

 $G(S) \approx G^* + \sum_{i=1}^n \ \mathcal{G}_i(b_i) \ \Longleftrightarrow \ \ \text{binding energy matrix}$  (in unit of kT  $\approx$  0.6 kcal/mole)



binding free energy of "consensus" seq  $S^* = \{b_1^*, b_2^*, ..., b_I^*\}$ 

| pos.  A C G T | 10       | 11  | 12  | 13  | 14  | 15  | 16  | 17  |
|---------------|----------|-----|-----|-----|-----|-----|-----|-----|
| A             | 1.8      | 2.4 | 1.6 | 1.0 | 0   | 2.1 | 0.8 | 1.1 |
| C             | $^{2.4}$ | 1.9 | 4.2 | 2.1 | 0.3 | 0   | 0   | 0   |
| G             | 0        | 1.6 | 0   | 0   | 1.2 | 3.2 | 1.0 | 1.2 |
| T             | 3.0      | 0   | 2.2 | 2.2 | 0.6 | 2.2 | 0.7 | 0.3 |
|               |          |     |     |     |     |     |     |     |

(D.S. Fields, Y. He, A. Al-Uzri & G. Stormo, 1997)

#### in vivo binding: Effect of the genomic background

Q: occupation freq  $f_i$  of a "target site"  $S_i$  in genomic DNA?

model genomic DNA as a collection of N "sites" of L nt each

$$S_n = \{b_1^{(n)}, b_2^{(n)}, ..., b_L^{(n)}\}$$
 (with  $N \sim 10^7$  for E. coli)

in vitro binding constant:  $K_n \equiv K(S_n) = [P] \cdot [S_n] / [P \cdot S_n] \propto e^{G_n / kT}$ 

 $G_n \equiv G(S_n) = G^* + \Delta G_n$ , where  $\Delta G_n \equiv \sum_{i=1}^{L} \mathcal{G}_i(b_i^{(n)})$ binding energy:

• single TF in bacterium cell (assume TF confined to DNA)

 $\Rightarrow f_{j} = \frac{[P \cdot S_{j}]}{\sum_{n=1}^{N} [P \cdot S_{n}]} = \frac{K_{j}}{\sum_{n=1}^{N} K_{n}^{-1}} = \frac{1}{1 + \sum_{n \neq j} K_{j} / K_{n}} = \frac{1}{1 + \sum_{n \neq j} e^{(\Delta G_{j} - \Delta G_{n})/kT}}$ 

• multiple (N<sub>P</sub>) TFs [grand canonical ens] • cf: in vitro binding

 $\Rightarrow f_j \approx \frac{1}{1 + \left(\sum_{n \neq j} e^{(\Delta G_j - \Delta G_n)/kT}\right)/N_P} \qquad f(S) = \frac{[P]}{[P] + K(S)} = \frac{1}{1 + K(S)/[P]}$ 

13

effective in vivo binding constant  $f_j \approx \frac{1}{1 + \left(\sum_{n \neq j}^{N} e^{(\Delta G_j - \Delta G_n)/kT}\right)/N_p}$ • cf: in vitro binding  $f(S) = \frac{1}{1 + K(S)/[P]}$ 

- depends on competition from the rest of the genome
- even for "strong" target ( $G_i \ll G_n$ ), large N can make effective binding weak e.g., if  $\Delta G_i = 0$ ,  $\Delta G_{n \neq j} = G_{ns} - G^* \approx 15kT$ , then  $\widetilde{K}_j = N \cdot e^{-15} \approx 3$  nM
- since typical  $N_P = 1 \sim 1000$  molecules/cell (nM), expect functional demand for  $\widetilde{K}_i = 1 \sim 1000 \text{ nM}$

 $\widetilde{K}_j = e^{\frac{\Delta G_j}{kT}} \cdot \sum_{\{n=1(\neq j)\}}^N e^{-\frac{\Delta G_n}{kT}} \approx \begin{cases} 1 & \text{consensus seq} \\ e^{1\sim 3} = 3\sim 10 & \text{each mismatch} \end{cases}$ (Mnt matrix applied to *E. coli* genome or *randomly scrambled* genomes)

- → effect of the rest of genome: comparable to one good site S\*
- $ightharpoonup \widetilde{K}_j$  tunable in the desired range by "adjusting" no. mismatches Note: for the Lac repressor,  $K_{O1} \approx 1 \text{ pM}$  in vitro while  $\widetilde{K}_{O1} \approx 3 \text{ nM}$

How to "set" 
$$Z \approx 1$$
? "annealed approx" (valid for large  $\ln N$ ) [cf: Derrida's REM] 
$$Z = \sum_{n=1(\neq j)}^{N} e^{-\Delta G_n/kT} \approx N \cdot \mathbf{avg} \Big[\!\![ e^{-\Delta G/kT} \Big]\!\!] = N \cdot \mathbf{avg} \Big[\!\![ \prod_{i=1}^{L} e^{-\mathcal{G}_i(b)/kT} \Big]\!\!]$$
 
$$= N \cdot \prod_{i=1}^{L} \Big\{ \mathbf{avg} \Big[\!\![ e^{-\mathcal{G}_i(b)/kT} \Big]\!\!] \Big\} = N \cdot \prod_{i=1}^{L} \Big\{ \sum_{b \in \{A,C,G,T\}} f_b \cdot e^{-\mathcal{G}_i(b)/kT} \Big\} \approx 1$$
 iid sequence with nt frequency  $f_b$  Mnt matrix with  $f_b$  of  $E$ . coli

- →  $Z \approx 1$  from the <u>design</u> of TF-DNA interaction  $(g_i(b), L)$
- → use simpler model to gain insight

$$\mathcal{G}_{i}(b) = \begin{cases} 0 & \text{if } b = b_{i}^{*} \\ \varepsilon & \text{if } b \neq b_{i}^{*} \end{cases} \Longrightarrow \mathbf{Z} \approx \mathbf{N} \cdot \left[ \frac{1}{4} + \frac{3}{4} e^{-\varepsilon/kT} \right]^{L}$$

- physiological range:  $\varepsilon \sim 2 kT$
- $\widetilde{K} \approx e^{(\#\text{mm}) \cdot \varepsilon / kT}$  (5-10x per mismatch)
- biochem of TF-DNA interaction allows for flexible tuning of  $\widetilde{K}$

to have Z = 1 for  $N = 10^7$ 

| ε/kT | 1  | 2  | 3  | 4  |
|------|----|----|----|----|
| L    | 25 | 15 | 12 | 11 |