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The similarity in the three-dimensional structures of homologous
proteins imposes strong constraints on their sequence variability.
It has long been suggested that the resulting correlations among
amino acid compositions at different sequence positions can be
exploited to infer spatial contacts within the tertiary protein struc-
ture. Crucial to this inference is the ability to disentangle direct and
indirect correlations, as accomplished by the recently introduced
direct-coupling analysis (DCA). Here we develop a computationally
efficient implementation of DCA, which allows us to evaluate the
accuracy of contact prediction by DCA for a large number of protein
domains, based purely on sequence information. DCA is shown to
yield a large number of correctly predicted contacts, recapitulating
the global structure of the contact map for the majority of the pro-
tein domains examined. Furthermore, our analysis captures clear
signals beyond intradomain residue contacts, arising, e.g., from
alternative protein conformations, ligand-mediated residue cou-
plings, and interdomain interactions in protein oligomers. Our
findings suggest that contacts predicted by DCA can be used as a
reliable guide to facilitate computational predictions of alternative
protein conformations, protein complex formation, and even the
de novo prediction of protein domain structures, contingent on the
existence of a large number of homologous sequences which are
being rapidly made available due to advances in genome sequen-
cing.

statistical sequence analysis ∣ residue–residue covariation ∣
contact map prediction ∣ maximum-entropy modeling

Correlated substitution patterns between residues of a protein
family have been exploited to reveal information on the struc-

tures of proteins (1–10). However, such studies require a large
number (e.g., the order of 1,000) of homologous yet variable pro-
tein sequences. In the past, most studies of this type have there-
fore been limited to a few exemplary proteins for which a large
number of such sequences happened to be already available.
However, rapid advances in genome sequencing will soon be
able to generate this many sequences for the majority of common
bacterial proteins (11). Sequencing a large number of simple
eukaryotes such as yeast can in principle generate a similar num-
ber of common eukaryotic protein sequences. In this paper, we
provide a systematic evaluation of the information contained in
correlated substitution patterns for predicting residue contacts, a
first step toward a purely sequence-based approach to protein
structure prediction.

The basic hypothesis connecting correlated substitution pat-
terns and residue–residue contacts is very simple: If two residues
of a protein or a pair of interacting proteins form a contact, a
destabilizing amino acid substitution at one position is expected
to be compensated by a substitution of the other position over the
evolutionary timescale, in order for the residue pair to maintain
attractive interaction. To test this hypothesis, the bacterial two-
component signaling (TCS) proteins (12) have been used because

of the large number of TCS protein sequences, which already
numbered in the thousands 5-y ago (13). Simple covariance-based
analysis was first applied to characterize interactions between
residues belonging to partner proteins of the TCS pathways
(14, 15); it was found to partially predict correct interprotein
residue contacts, but also many residue pairs which are far apart.
A major shortcoming of covariance analysis is that correlations
between substitution patterns of interacting residues induce
secondary correlations between noninteracting residues. This
problem was subsequently overcome by the direct-coupling ana-
lysis (DCA) (16, 17), which aims at disentangling direct from
indirect correlations. The top 10 residue pairs identified by DCA
were all shown to be true contacts between the TCS proteins, and
they were used to guide the accurate prediction (3-Å rmsd) of the
interacting TCS protein complex (18, 19). Furthermore, DCA
was used to shed light on interaction specificity and interpathway
cross-talk in bacterial signal transduction (20).

Due to rapid advances in sequencing technology, there exists
by now a large number of bacterial genome projects, approxi-
mately 1,700 completed and 8,300 ongoing (11). These genome
sequences can be used to compute correlated substitution pat-
terns for a large number of common bacterial proteins and inter-
acting protein pairs, even if they are not duplicated (i.e., present
at one copy per genome on average). DCA can then be used in
principle to infer the interacting residues and eventually predict
tertiary and quaternary protein structures for the majority of bac-
terial proteins, as has been done so far for the TCS proteins. Here
we address a critical question for this line of pursuit—how well
does DCA identify native residue contacts in proteins other
than TCS?

Previously, a message-passing algorithm was used to imple-
ment DCA (16). This approach, here referred to as mpDCA, was
rather costly computationally because it is based on a slowly
converging iterative scheme. This cost makes it unfeasible to ap-
ply mpDCA to large-scale analysis across many protein families.
Here we will introduce mfDCA, an algorithm based on the mean-
field approximation of DCA. The mfDCA is 103 to 104 times fas-
ter than mpDCA, and hence can be used to analyze many long
protein sequences rapidly. By analyzing 131 large domain families
for which accurate structural information is available, we show
that mfDCA captures a large number of intradomain contacts
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across these domain families. Together, the predicted contacts
are able to recapitulate the global structure of the contact map.
Many cases, where mfDCA finds strong correlation between
distant residue pairs, have interesting biological reasons, includ-
ing interdomain contacts, alternative structures of the same
domain, and common interactions of residues with a ligand. The
mfDCA results are found to outperform those generated by sim-
ple covariance analysis as well as a recent approximate Bayesian
analysis (10).

Results and Discussion
A Fast DCA Algorithm. In this study, we wish to characterize the
correlation between the amino acid occupancy of residue posi-
tions as a predictor of spatial proximity of these residues in folded
proteins. Starting with a multiple-sequence alignment (MSA) of a
large number of sequences of a given protein domain, extracted
using Pfam’s hidden Markov models (HMMs) (21, 22), the basic
quantities in this context are the frequency count f iðAÞ for a single
MSA column i, characterizing the relative frequency of finding
amino acid A in this column, and the frequency count f ijðA;BÞ
for pairs of MSA columns i and j, characterizing the frequency
that amino acids A and B coappear in the same protein sequence
in MSA columns i and j. Alignment gaps are considered as the
21st amino acid. Mathematical definitions of these counts are
provided in Methods.

The raw statistical correlation obtained above suffers from a
sampling bias, resulting from phylogeny, multiple-strain sequen-
cing, and a biased selection of sequenced species. The problem
has been discussed extensively in the literature (10, 23–26). In this
study, we implemented a simple sampling correction, by counting
sequences with more than 80% identity and reweighting them in
the frequency counts. All the frequency calculations and results
reported below are obtained using this sampling correction; the
number of nonredundant sequences is measured as the effective
sequence numberMeff after reweighting (seeMethods). The com-
parison to results without reweighting and to reweighting at 70%
in SI Appendix, Fig. S1 shows that reweighting systematically
improves the performance of DCA, but results are robust with
respect to precise value of reweighting.

A simple measure of correlation between these two columns
is the mutual information (MI), defined by Eq. 3 in Methods. As
we will show, the MI turns out to be an unreliable predictor of
spatial proximity. Central to our approach is the disentanglement
of direct and indirect correlations, which is attempted via DCA,
which takes the full set of f iðAÞ and f ijðA;BÞ as inputs, and infers
“direct statistical couplings,” which generate the empirically
measured correlations. Their strength is quantified by the direct
information (DI) for each pair of MSA columns; see Eq. 12 in
Methods and ref. 16. However, the message-passing algorithm
used to implement DCA in ref. 16, mpDCA, was computationally
intensive, thus limiting its use in large-scale studies. Here we de-
veloped a much faster heuristic algorithm based on a mean-field
approach; seeMethods. This algorithm, termed mfDCA, is able to
perform DCA for alignments of up to about 500 amino acids per
row, as compared to 60–70 amino acids in the message-passing
approach. For the same protein length, mfDCA is about 103 to
104 times faster, which results mainly from the fact that the costly
iterative parameter learning in mpDCA can be solved analytically
in a single step in mfDCA. This performance gain enabled us to
systematically analyze hundreds of protein domains and examine
the extent to which a high DI value is a predictor of spatial proxi-
mity in a folded protein. Many residue-position pairs, which
are close neighbors along the sequence, also show high MI
and/or DI. To evaluate nontrivial predictions, we therefore
restricted our analysis throughout the paper to pairs, which are
separated by at least five positions along the protein’s backbone.

Intradomain Contacts. We shall first illustrate the correlation
between the DI values and the spatial proximity of residue pairs
through a specific example, namely the domain family homolo-
gous to the DNA-recognition domain (region 2) of the bacterial
Sigma-70 factor (Pfam ID PF04542). The mfDCA was used to
compute the DI values using anMeff of approximately 3,700 non-
redundant sequences—i.e., below a threshold of 80% sequence
identity. The MSA columns with the 20 largest DI and MI values
are mapped to the sequence of the SigmaE factor of Escherichia
coli (encoded by rpoE) whose structure has been solved to 2-Å
resolution [Protein Data Bank (PDB) ID 1OR7; ref. 27]. The
residue pairs with the 20 highest ranked DI values are connected
by bonds of different colors in Fig. 1A. Those residue pairs with
minimum atomic distances <8 Å are defined as “contacts” and
are shown in red, the others in green.* Because only one out of
the top 20 DI pairs is green, DI is seen as a good predicator of
spatial contact, characterized by a true positive (TP) rate of 95%
for this protein. A similar analysis using the 20 highest MI values
(Fig. 1B) yielded 13 contacts (TP ¼ 65%), illustrating a reduced
predictive power by the simple covariance analysis. Furthermore,
we see that the DI predictions are more evenly distributed over
the entire domain, whereas many of the MI predictions are asso-
ciated with a few residues; this difference is significant for contact
map prediction and will be elaborated upon below.

In order to test the generality of the predictive power of DI
ranking as contacts, we applied the above analysis to 131 predo-
minantly bacterial domain families (with >90% of the sequences
belonging to bacterial organisms). These families were selected
according to the following two criteria (see Methods for details):
(i) The family contains Meff > 1;000 nonredundant sequences
after applying sampling correction for >80% identity, in order to
ensure statistical enrichment, and (ii) there exist at least two
available high-quality X-ray crystal structures (independent PDB
entries of resolution <3 Å), so that the degree of spatial proxi-
mity between each residue pair can be evaluated. The selected
domain families encompassed a total of 856 different PDB struc-
tures (see SI Appendix, Table S1). Note that Meff is found to
be typically in the range of one-third to one-half of the total
sequence number M (see SI Appendix, Fig. S2).

Fig. 1. Contact predictions for the family of domains homologous to Region
2 of the bacterial Sigma factor (Pfam ID PF04542) mapped to the sequence of
the SigmaE factor of E. coli (encoded by rpoE) (PDB ID 1OR7). A shows the top
20 DI predictions, and B shows the top 20 MI predictions for residue–residue
contacts, both with a minimum separation of five positions along the back-
bone. Each pair with distance <8 Å is connected by a red link, and the more
distant pairs are connected by the green links.

*The choice of the relatively large value of 8-Å minimum atom distance as a cutoff value
for contacts is supported later in the discussion of Fig. 2B, where the distance distribution
of the top DI pairings is analyzed.
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We computed the DI values for each residue pair of the 131
domain families and evaluated the degree to which high-ranking
DI pairs corresponded to actual contacts (minimum atomic dis-
tances <8 Å), based on the available structures for each domain.
The results are shown in Fig. 2A (black star). The x axis represents
the number of top-ranked DI pairs (separation >5 positions along
the sequence) considered and the y axis is the average fraction
of pairs up to this DI ranking that are true contacts. The latter
was calculated using the best-predicted structure† (i.e., the PDB
structure with the highest TP value) for each of the 131 families.
Similar results were obtained when considering all the available
structures; see below. In contrast, results computed using MI
ranking (red circle) gave significantly reduced TP rates.‡ Also
shown in Fig. 2A are results generated by an approximate Baye-
sian approach, which has been established as the currently
best-performing algorithm in identifying contacts from sequence
correlation analysis (10). The Bayesian approach (yellow trian-
gle) is seen to perform better than the simple covariance analysis
(MI), but TP rates are not as high as the ones obtained by
mfDCA. Analogous results for the relative performance of these
methods are also observed for a collection of 25 eukaryotic pro-
teins analyzed (see SI Appendix, Fig. S3), suggesting that the
applicability of DCA is not restricted to bacterial proteins.

As seen in Fig. 2A, on average 84% of the top 20 DI pairs
found by mfDCA (black star, black solid curve) are true contacts.
The average TP rate is indicative of the TP of typical domain
families, as the individual TPs for the 131 families examined
are distributed mostly in the range of 0.7–1.0; see SI Appendix,
Fig. S4A evaluated using the best-predicted structure and SI
Appendix, Fig. S4B when all 856 structures are used. This figure
also shows little difference in the quality of the prediction using
the top 10, 20, or 30 DI pairs, and coherent results between
the best-predicted and all 856 structures, despite the somewhat
uneven distribution of available PDB structures over the 131 do-
main families. The distribution of the actual (minimum atomic)
intradomain distances between residue pairs with the top 10, 20,
and 30 DI ranking are shown in Fig. 2B, using the complete set of
856 PDB structures. The distribution exhibits a strong peak
around 3–5 Å with a weaker secondary peak around 7–8 Å, for

all three sets of DI rankings used. This double-peak structure is a
characteristic feature of the DCA results. It is not observed in the
background distribution of all residue pairs (see SI Appendix,
Fig. S5, which has a single maximum around 20–25 Å). In Fig. 2B,
this background is reflected by a small bump in the histograms
for the top 20 and 30 DI ranking pairs. The two short-distance
peaks are consistent with the biophysics of molecular contacts:
The first peak presumably arises from short-ranged interactions
like hydrogen bonding or pairings involved in secondary structure
formation, whereas the second peak likely corresponds to long-
ranged, possibly water-mediated contacts (28–30). The observa-
tion of this second, biologically reasonable peak in Fig. 2B also
motivates the choice of 8 Å as a cutoff distance for what is con-
sidered a residue–residue contact in Figs. 1 and 2A.

To understand how many sequences are actually needed for
mfDCA, we randomly generated subalignments for two protein
families; see SI Appendix, Fig. S6. For at least these two families,
an effective number ofMeff of approximately 250 is already suffi-
cient to reach TP rates close to one for the top predicted residue
pairs, and the predictive power increases monotonously when
more sequences are available. These numbers are consistent with
but slightly larger than the sequence requirements reported in
ref. 31 for the statistical-coupling analysis originally proposed
in ref. 5.

Long-Distance High-DI Residue Pairs. The results from the previous
section illustrate the ability of mfDCA to identify intradomain
contacts with high sensitivity. However, a small fraction of
pairs showed high DI values (in the top 20–30 ranking) but were
located far away according to the available crystal structure. Here
we investigate various biological reasons for the appearance of
such long-distance direct correlations.

Interdomain Residue Contacts. Given the biological role of some
interdomain contacts (32), we studied if the appearance of
long-distance high-DI pairs may be due to interactions between
proteins which form oligomeric complexes, as described pre-
viously for the dimeric response regulators of the bacterial two-
component signaling system (16). To further investigate this
possibility, we examined members of the 131 proteins which
formed homodimers or higher-order oligomers according to the
corresponding X-ray crystal structures.

A first example is the ATPase domain of the family of the
nitrogen regulatory protein C (NtrC)-like sigma54-dependent
transcriptional activators (Pfam PF00158). Upon activation, dif-
ferent subunits of this domain are known to pack in the front-

Fig. 2. (A) Mean TP rate for 131 domain families, as a function of the number of top-ranked contacts and histogram of the distances of all predicted structures
for each of the 131 domains studied. DI results (★) clearly outperform the other two methods: MI (red ⦁) and an approximate Bayesian approach (yellow ▾)
developed by Burger and van Nimwegen (10). Their method aims at disentangling direct and indirect correlations by averaging over tree-shaped residue–
residue coupling networks, and it contains a phylogeny correction. The method can also reach length-400 multiple alignments as mfDCA does; our imple-
mentation follows closely the description in ref. 6. However, coupling trees do not allow for multiple coupling paths between two residues as DCA does,
possibly accounting for its lower TP rates compared to mfDCA. (B) The mfDCA predictions for the top 10, 20, and 30 residue pairs show a bimodal distribution
of intradomain distances with two frequency peaks around 3–5 and 7–8 Å.

†The best-predicted structures were used due to the variance in the quality of PDB
structures. Also, for the number of cases where substantially different structures of the
same protein exist in the PDB, the existence of a single structure containing the predicted
contacts substantiates them as contacts of a native conformation of that protein.

‡Both DI and MI benefited modestly from sampling correction; see SI Appendix, Fig. S1 for
a comparison of the performance of these methods with/without sampling correction.
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to-back orientation to form a heptameric ring, wrapping DNA
around the complex (33). We compared the DCA results to the
structure of NtrC1 of Aquifex aeolicus (PDB ID 1NY6; ref. 33).
Among the top 20 DI pairs, 17 were intradomain contacts. The
three remaining pairs were long-distance (>10 Å) within the
domain. Strikingly, all three were within 5 Å when paired with the
closest position in an adjacent subunit of the heptamer complex;
see Fig. 3. These pairs appear to have coevolved to maintain the
proper formation of the heptamer complex. A second example
of high-DI interdomain contact is shown in SI Appendix, Fig. S7
for the multidrug resistance protein MexA of Pseudomonas
aeruginosa, where nine subunits oligomerize to form a funnel-like
structure across the periplasmic space for antibiotic efflux (PDB
ID 1VF7; ref. 34).

We further tested the occurrence of interdomain contacts at a
global level. Out of the 131 studied domain families, 21 families
feature X-ray crystal structures involving oligomers with pre-
dicted interdomain contacts (see SI Appendix, Table S3). Among
the top 20 DI pairs that are not intradomain contacts, about half
of them turned out to be interdomain contacts as shown in
Fig. 3D.

Alternative Domain Conformations.Another cause of long-distance
high-DI pairs is the occurrence of alternative conformations for
domains within the same family. As an illustration, we examine
the domain family GerE (Pfam PF00196), whose members in-
clude the DNA-binding domains of many response regulators
in two-component signaling systems.

Using the DNA-bound DNA-binding domain of the nitrate/
nitrite response regulator NarL of E. coli (PDB ID 1JE8; ref. 35)
as a structural template, we found that all of the top 20 DI pairs
are true contacts (red bonds in Fig. 4A). However, when mapping
the same DI pairs to the structure of the full-length transcrip-
tional regulatory protein DosR of Mycobacterium tuberculosis
(PDB ID 3C3W; ref. 36), seven pairs are found at distances >8 Å
(green bonds in Fig. 4B, with the response-regulator domain
shown in gray). Comparison of Fig. 4 A and B clearly shows that

all of the green bonds involve pairing with the C-terminal helix
(shown in light blue), which is significantly displaced in the
full-length structure, presumably due to interaction with the (un-
phosphorylated) regulatory domain. As proposed byWisedchaisri
et al. (36), a likely scenario is that the DNA-binding domain of
DosR is broken up by the interdomain interaction in the absence
of phosphorylation, whereas phosphorylation of DosR restores
its DNA-binding domain into the active form represented by
the DNA-bound NarL structure.

It is difficult to estimate the extent to which alternative con-
formations may be responsible for the observed long-distance
high-DI contacts, for less characterized domains for which alter-
native conformations may not be known. However, the example
shown in Fig. 4 may motivate future studies to use these long-

Fig. 3. The only three long-distance high-DI predictions found out of the top 20 DI pairs in the Sigma54 interaction domain of protein NtrC1 of A. aeolicus
(PDB ID 1NY6) out of the top 20 predicted couplets are multimerization contacts. Structures showing each of these three interdomain contacts which are
separated by less than 5 Å in a ring-like heptamer formed by Sigma54 interaction domains. (A) Residue pair GLU(174)-ARG(253), (B) residue pair PHE(226)-TYR
(261), and (C) residue pair ALA(197)-ALA(249). (D) Oligomerization contacts are found in 21 structures of the 131 families studied (see SI Appendix, Table S3).
These contacts represent a significant percentage of long-distance high-DI contacts observed in our predictions.

Fig. 4. The figures show the top 20 contacts predicted by DI for the family of
response-regulator DNA-binding domain (GerE, PF00196) (containing both
the dark- and light-blue colored regions). In A, the contacts are mapped
to the DNA-binding domain of E. coli NarL, bound to the DNA target
(PDB ID 1JE8). The TP rate for the top 20 DI pairs is 100%, and they are
all shown as red links. In B, the contacts are mapped to the full-length re-
sponse-regulator DosR of M. tuberculosis (PDB ID 3C3W), with the (unpho-
sphorylated) response-regulator domain shown in gray. The top 20 DI
pairings is only 65% in this case (13 red and 7 green links). The difference
in prediction quality for the two structures can be traced back to a major
reorientation of the C-terminal helix of the GerE domain (light blue) in B.
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distance high-DI contacts to explore possible alternative confor-
mations.

Ligand-Mediated Interactions.Another special case of interdomain
residue interactions and another cause of long-distance high-DI
pairing is shown in Fig. 5. Here, mfDCA found the metalloen-
zyme domain family (PF00903) to have a high-DI intradomain
residue pair which is separated by more than 14 Å when mapped
to the glutathione transferase FosA of P. aeruginosa (PDB ID
1NKI; ref. 37). FosA is a metalloglutathione transferase which
confers resistance to fosfomycin by catalyzing the addition of glu-
tathione to fosfomycin. It is a homodimeric enzyme whose activity
is dependent on Mn(II) and Kþ, and the Mn(II) center has been
proposed as part of the catalytic mechanism (37). We observed
that the two residues belonging to the different subunits of the
high-DI pair, Glu110 (pink) and His7 (yellow), are in direct con-
tact (3 Å residue pair and 1.5 Å residue-ligand separation) with
the Mn(II) ion (red) in the dimer configuration (Fig. 5). Thus, the
“direct interaction” between these residues found by mfDCA is
presumably mediated through their common interaction with a
third agent, the metal ion in this case. There may well be other
cases with interactions mediated by binding to other metabolites,
RNA, DNA, or proteins not captured in the available crystal
structures.

Contact Map Reconstruction. So far, we have focused on the top 20
DI pairs, which are largely intra- or interdomain contacts. How-
ever, one of the most striking features of the DI result in Fig. 2A is
how gradually the average TP rate declines with increasing DI
ranking. It is therefore possible to turn the question around:
How many residue pairs are predicted, when we require a given
minimum TP rate? For instance, one can go up to a DI ranking of
70 before the average TP rate declines to 70%, meaning that, if
one were to predict contacts using the top 70 DI pairs, one would
have obtained approximately 50 true contacts on average. This
feature may be exploited for sequence-based structure prediction
and deserves further analysis.

To become more quantitative, we define the number of accep-
table pairs NAPx as the (largest) number of DI-ranked pairs
where the specified TP rate (x%) is reached for a given protein.
NAPx can be viewed as an index that characterizes the number of
contact predictions at a certain acceptable quality level (given
by x). We computed this index for every domain in all 856 struc-
tures in our database, for TP levels of 0.9, 0.8, and 0.7. The results
are shown as cumulative distributions in Fig. 6. A casual inspec-

tion of these distributions shows that there are many structures
with high NAP. Suppose the acceptable TP level is 0.7. The
median of NAP70 is 52, meaning that, in half of the structures
examined, the number of high-ranking, predictive DI pairs is at
least 52. Furthermore, 70% of the structures have NAP70 > 30
and 34% of the structures have NAP70 > 100. A normalized ver-
sion of Fig. 6 with respect to the length of the domain L is shown
in SI Appendix, Fig. S8. In one extreme case involving the family
of bacterial tripartite tricarboxylate receptors (PF03401), NAP70

was 600—i.e., 70% of the top 600 DI pairs correspond to true
contacts when mapped to the best-predicted structure (PDB
ID 2QPQ; ref. 38); see SI Appendix, Fig. S9A. This domain has
a length of L ¼ 274 and has approximately 2,300 contacts. In an-
other example, the extracellular solute-binding family (PF00496)
mapped to the structure of the periplasmic oligopeptide-binding
protein OppA of Salmonella typhimurium (PDB ID 1JET; ref. 39)
has a NAP70 of 497 (SI Appendix, Fig. S9B, L ¼ 372, and approxi-
mately 2,530 contacts).

We also computed the NAP70 distribution using MI; see SI
Appendix, Fig. S10. The difference between DI and MI, about
10–20% in TP rate according to Fig. 2A, is seen much more sig-
nificantly when displayed according to the NAP index, with the
median NAP70 being 5 for MI and 52 for DI, which shows that
DCA generates many more high-valued contact pair predictions.
We also compared the performance of DCA with the approxi-
mate Bayesian method (red dashed curve in SI Appendix,
Fig. S10), which gives a median NAP70 of 25 that is halfway
between that of MI and mfDCA.

The large number of contacts correctly predicted by DCA
prompted us to explore the extent to which DCA may be used
to predict the contact maps of protein domains. For a domain
with L amino acids, we calculated the inferred maps by sorting
residue pairs according to their DI, and keeping the 2L high-
est-ranking pairs with minimum separation of five positions along
the sequence. For the contact map prediction, we included
further those pairings which have equal or larger DI than the ones
mentioned above, but with shorter separation along the sequence
because they may be informative about secondary structures.
Fig. 7 shows two examples of such contact map predictions,
for the prokaryotic promoter recognition domain of SigmaE
already shown in Fig. 1 (PDB ID 1OR7, L ¼ 71) and for the eu-
karyotic H-Ras protein (PDB ID 5P21; ref. 40, L ¼ 160). The
figure shows the native contact maps, together with the predic-
tions by MI (Fig. 7, Left) and DI (Fig. 7, Center). Correctly pre-
dicted native contacts (i.e., the TPs) are indicated in red. The
unpredicted native contacts taken from the X-ray crystal struc-
tures are shown in gray, and the incorrect predictions are shown
in green. It is evident that, for both proteins, DI works substan-

Fig. 5. The metalloenzyme domain (PF00903) of protein FosA (PDB ID 1NKI)
is an example of a case where long-distance high-DI pairs are in fact residue
pairs coordinating a ligand. The high-DI pair involving the residues Glu110
(pink) and His7 (yellow) coordinate a metal ion Mn(II) (red) in its dimer
configuration. Kþ ions are shown as larger spheres (gray and blue), each
coordinated by a monomer of the corresponding color.
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Fig. 6. Cumulative distribution of the number of acceptable pairs (NAPx ) for
a given TP rate x. The curves show the probability of NAPx to be larger than a
given number n for contacts at given TP rates of 0.9, 0.8, and 0.7. The curves
are computed for all 856 PDB structures in the dataset. We observe that the
probability of NAP70 > 30 is 70% and NAP70 > 100 is 34%, which implies that
a substantial number of protein domains can have accurate predictions that
go beyond the top 30 DI pairings. We also identify some exceptional cases
with NAP70 > 600.
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tially better than MI, both in terms of the TP rate and the
representation of the native contact map. To become more quan-
titative, we have binned the predicted pairs according to their
separation along the primary amino acid sequence (Fig. 7, Right).
We observe that DI captures in particular a higher number and
more accurately those contacts between residues, which are very
distant along the sequence. Also, the DI predictions are more
evenly distributed, whereas MI predictions tend to cluster to-
gether.

Discussion.
We have shown the ability of DCA to identify with high-accuracy
residue pairs in domain families that might have coevolved to-
gether and hence are representative of physical proximity in the
three-dimensional fold of the domain. We have done an extensive
evaluation of these capabilities for a large number of families and
individual PDB structures. We found that DCA is not only able to
identify intradomain contacts but also interdomain residue pairs
that are part of oligomerization interfaces. Although we focused
on bacterial proteins, this methodology can be applied to the
ever-increasing number of eukaryotic sequences. Our initial re-
sults suggest that mfDCA performance is conserved for non-
bacterial proteins. One potential application is the identification
of interaction interfaces for homodimers that could ultimately
help in complex structure prediction, e.g., the cases in Fig. 3 and
SI Appendix, Fig. S7. Our results might open unexplored avenues
of research for which full contact maps could be estimated and
used as input data for de novo protein structure identification,
which is particularly interesting in the case of interdomain con-
tacts in multidomain proteins. Ultimately, this methodology can
be utilized with pairs of proteins rather than single proteins to
identify potential protein–protein interactions. An example of
this approach was introduced in ref. 16, however, the current
mathematical formulation of the method as well as its computa-
tional implementation allows an analysis to a much larger scale.

Despite the accuracy of the extracted signal, mfDCA cannot
be expected to extract all biological information contained in
the pair correlations. This idea can be illustrated by comparing
the mfDCA results to those of statistical-coupling analysis
(SCA), developed by Lockless and Ranganathan (5) and used
to identify “coevolving protein sectors” (41). We have applied
mfDCA to the data of ref. 41 for the Trypsin protein family
(Serine protease), where SCA identified three sectors related to
different functionalities of the protein, which cover almost 30%
of all residues. The mfDCA leads to an 83.3% TP rate for the top
30 contact predictions (PDB ID 3TGI; ref. 42)—i.e., to a perfor-
mance which is comparable to the other protein families analyzed
here. Out of the resulting 25 true contact pairs, only eight are
found within the identified sectors. Among them, three are
disulfide bonds (C42∶C58, C136∶C201, C191∶C220) and another
two are inside a catalytic triad crucial for the catalytic activity of
the protein family (H57∶S195, D102∶S195). The other 17 true
contacts predicted by mfDCA are distributed over the protein
fold, without obvious relation to the sectors (see SI Appendix,
Table S4). The difference in prediction can be traced back to
differences in the algorithmic approaches: SCA uses clustering
to identify larger groups of coevolving sites (sectors), whereas
DCA uses maximum-entropy modeling to extract pairs of directly
coupled residues. Thus, the two algorithms extract different and,
in both cases, biologically important information. It remains a
future challenge to develop techniques unifying SCA and DCA,
and to extract even more coevolutionary information from
multiple-sequence alignments.

Methods
Data Extraction. Sequence datasets were extracted primarily from Pfam
families with more than 1,000 nonredundant sequences. We decided to focus
on families that are predominantly bacterial (i.e., more than 90% of the
family sequences belong to bacterial organisms). Another requirement in
this dataset is that such families must have at least two known X-ray crystal
structures with a resolution of 3 Å or better. The PDB (43) was accessed
to obtain crystal structures of proteins. An additional criterion to improve

Fig. 7. Two examples of contact map predictions using MI (A and D) andmfDCA (B and E). Gray symbols represent the native map with a cutoff of 8 Å, colored
symbols the computational contact predictions using MI or DI ranking (red squares for TP and green squares for spatially distant pairs). The number of pairs is
determined such that there are 2L pairs with minimum separation five along the sequence, where L is the domain length. The right-most panels (C and F) bin
the predictions of MI (blue) and mfDCA (red) according to their separation along the protein sequence. The overall bars count all predictions, the shaded part
the TPs. Note in particular that mfDCA leads to a higher number of more accurate predictions for large separations. (A–C) The promoter recognition helix
domain of the SigmaE factor (PDB ID 1OR7). (D–F) The eukaryotic signaling protein Ras (PDB ID 1P21). For better comparability of native vs. predicted contacts,
the predictions are displayed only above the diagonal.
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statistical significance when picking sequences that belong to a particular
Pfam (22) family, was to use a stricter E-value threshold than the standard
used by the software package HMMER (21) to classify domain membership.
An in-house mapping application was developed to map domain family
alignments and predicted couplets to specific residues in PDB structures.
Some of the data extraction tools used in this study are described in more
detail in ref. 17. A total of 131 families were selected that complied with
all these criteria. A list of these Pfam families and the 856 PDB structures ana-
lyzed can be accessed in the SI Appendix, Tables S1 and S2).

For each family, the protein sequences are collected in one MSA denoted
by fðAa

1;:::;A
a
LÞj a ¼ 1;:::;Mg, where L denotes the number of MSA columns

(i.e., the length of the protein domains). Alignments are local alignments
to the Pfam HMM; because of the large number of proteins in each MSA,
we refrained from refinements using global alignment techniques.

Sequence Statistics and Reweighting. As already mentioned in Results and
Discussion, the main inputs of DCA are reweighted frequency counts for
single MSA columns and column pairs:

f iðAÞ ¼
1

Meff þ λ

�
λ

q
þ∑

M

a¼1

1

ma δA;Aa
i

�

f ijðA;BÞ ¼
1

Meff þ λ

�
λ

q2
þ∑

M

a¼1

1

ma δA;Aa
i
δB;Aa

j

�
: [1]

In this equation, δA;B denotes the Kronecker symbol, which equals one if
A ¼ B, and zero otherwise. Furthermore, we have defined q ¼ 21 for the
number of different amino acids (also counting the gap), and a pseudocount
λ (44), whose value will be discussed below. The weighting of the influence of
a single sequence by the factor 1∕ma aims at correcting for the sampling bias.
It is determined by the number

ma ¼ jfb ∈ f1;…;MgjseqidðAa;AbÞ > 80%gj [2]

of sequences Ab ¼ ðAb
1 ;:::;A

b
L Þ, b ∈ f1;:::;Mg, which have more than 80%

sequence identity (seqid) with Aa ¼ ðAa
1;:::;A

a
LÞ, where a itself is counted.

The same reweighting, but with a 100% sequence-identity threshold, would
remove multiple counts of repeated sequences. Reweighting systematically
improves the results (see SI Appendix, Fig. S1), with only a weak dependence
on the precise threshold value (in the range of 70–90%) and the specific
protein family. Last, we introduced the effective sequence number
Meff ¼ ∑M

a¼1 1∕m
a as the sum over all sequence weights. These counts allow

for calculating the mutual information,

MIij ¼ ∑
A;B

f ijðA;BÞ ln
f ijðA;BÞ
f iðAÞf jðBÞ

; [3]

which equals zero if and only if i and j are uncorrelated, and is positive
otherwise.

Maximum-Entropy Modeling. To disentangle direct and indirect couplings,
we aim at inferring a statistical model PðA1;:::;ALÞ for entire protein se-
quences ðA1;:::;ALÞ. To achieve coherence with data, we require this model
to generate the empirical frequency counts as marginals,

∀ i;Ai: ∑
fAkjk≠ig

PðA1;…;ALÞ≡ f iðAiÞ

∀ i;j;Ai;Aj: ∑
fAk jk≠i;jg

PðA1;…;ALÞ≡ f ijðAi;AjÞ: [4]

Besides this constraint, we aim at the most general, least-constrained model
PðA1;:::;ALÞ. This model can be achieved by applying the maximum-entropy
principle (45, 46), and it leads to an explicit mathematical form of PðA1;:::;ALÞ
as a Boltzmann distribution with pairwise couplings eijðA;BÞ and local biases
(fields) hiðAÞ:

PðA1;…;ALÞ ¼
1

Z
exp

�
∑
i<j

eijðAi;AjÞ þ∑
i

hiðAiÞ
�
: [5]

The model parameters have to be fitted such that [4] is satisfied. In this
fitting procedure, one has to consider that Eq. 5 contains more free para-
meters than there are independent conditions in [4], which allows one to
change couplings and fields together without changing the sum in the
exponent. Therefore, multiple but equivalent solutions for the fitting are
possible. To remove this freedom, we consider all couplings and fields
measured relative to the last amino acid A ¼ q, and set

∀ i;j;A: eijðA; qÞ ¼ eijðq;AÞ ¼ 0; hiðqÞ ¼ 0. [6]

Details on the maximum-entropy approach are given in the SI Appendix.

Small-Coupling Expansion. Eq. 5 contains the normalization factor Z, in statis-
tical physics also called the partition function, which is defined as

Z ¼ ∑
A1;…;AL

exp
�
∑
i<j

eijðAi;AjÞ þ∑
i

hiðAiÞ
�

[7]

and includes a sum of qL terms. Its direct calculation is infeasible for any rea-
listic protein length and approximations have to be used. In a prior paper
(16), several of us introduced a message-passing approach, which allows
the treatment of about 70 MSA columns simultaneously in about 2-d running
time on a standard desktop computer (larger MSAs need preprocessing to
decrease the number of columns before running message passing). Here
we introduce a much more efficient scheme, which for L ¼ 70 is about 3–4
orders of magnitude faster, and which allows one to directly analyze align-
ments with L ≤ 1;000 (L ≤ 500 on a standard computer because of limited
working memory). The total algorithmic complexity is Oðq3N3Þ. The major
speedup compared to the iterative message-passing solver results from the
fact that parameter inference can be done in a single computational step in
the new algorithm.

The approach is based on a small-coupling expansion (47, 48), which is
explained in detail in the SI Appendix: The exponential of Σi<jeijðAi;AjÞ in
Eq. 7 is expanded into a Taylor series. Keeping only the linear order of this
expansion, we obtain the well-known mean-field equations

f iðAÞ
f iðqÞ

¼ exp
�
hiðAÞ þ∑

A
∑
j≠i

eijðA;BÞf jðBÞ
�
; [8]

containing the single-column counts, as well as a simple relation between
the coupling eijðA;BÞ and the pair counts f ijðA;BÞ for all i;j ¼ 1;:::;L and
A;B ¼ 1;:::;q − 1

eijðA;BÞ ¼ −ðC−1ÞijðA;BÞ [9]

where

CijðA;BÞ ¼ f ijðA;BÞ − f iðAÞf jðBÞ: [10]

Eqs. 6 and 9 completely determine the couplings in terms of the data.
Note that the connected-correlation matrix C defined in Eq. 10 is a ðq − 1ÞL ×
ðq − 1ÞL matrix; the pairs ði;AÞ and ðj;BÞ have to be understood as joint single
indices in the inversion in Eq. 9.

In general, when constructed without pseudocounts (λ ¼ 0), this matrix is
not invertible, and formally Eq. 9 leads to infinite couplings. Even introducing
site-specific reduced amino acid alphabets (only those actually observed in
the corresponding MSA column) is found to be not sufficient for invertibility.
The matrix can, however, be regularized by setting λ > 0. For small λ, ele-
ments diverging in the λ → 0 limit dominate the DI calculation discussed
in the next paragraph. To avoid such spurious high DI values, we have to
go to relatively large pseudocounts; λ ¼ Meff is found to be a reasonable
value throughout families and is used exclusively in this paper. SI Appendix,
Fig. S11 shows a sensitivity analysis for different values of the pseudocount
for two domain families. The mean TP rates are computed for pseudocount
values λ ¼ w · Meff, with the weightsw ranging from 0.11 to 9. The optimum
value of λ is found for 1 ≤ w ≤ 1.5. Therefore, we used λ ¼ Meff throughout
this study.

Because of the long run time of the message-passing approach (mpDCA),
we could not compare its performance for all proteins studied in this paper.
SI Appendix, Fig. S12 contains two examples: Trypsin (PF00089) and Trypsin
inhibitor (PF00014). In both cases, mfDCA outperforms mpDCA. Furthermore,
it is straightforward to include into DCA also the next order of the small-
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coupling expansion beyond the mean-field approximation (which corre-
sponds to the so-called Thouless, Anderson, and Palmer (TAP) equations in
spin-glass physics; ref. 49). We do not find any systematic improvement of
the resulting algorithm, called tapDCA, when compared to mfDCA; see
SI Appendix, Fig. S12.

Direct Information. After having estimated the direct coupling eijðA;BÞ
through Eq. 8, we need a strategy for ranking the LðL − 1Þ possible interac-
tions according to their direct-coupling strength. Following the idea that MI
is a good measure for correlations, in ref. 16 we introduced a quantity called
direct information. It can be understood as the amount of MI between
columns i and j, which results from direct coupling alone.

To this end, we introduce for each column pair ði;jÞ an isolated two-site
model

PðdirÞ
ij ðA;BÞ ¼ 1

Zij
expfeijðA;BÞ þ ~hiðAÞ þ ~hjðBÞg; [11]

where the couplings eijðA;BÞ are computed using Eq. 8, and the auxiliary
fields ~h are given implicitly by compatibility with the empirical single-residue
counts:

f iðAÞ ¼ ∑
B

PðdirÞ
ij ðA;BÞ; f jðBÞ ¼ ∑

A

PðdirÞ
ij ðA;BÞ: [12]

As before, in order to reduce the number of free parameters to the number
of independent constraints, these fields are required to fulfill ~hiðqÞ ¼
~hjðqÞ ¼ 0. Note that the auxiliary fields have to be determined for each pair
ði;jÞ independently to fit Eq. 12. Finally, we define the DI as the MI of model

DIij ¼ ∑
AB

PðdirÞ
ij ðA;BÞ ln

PðdirÞ
ij ðA;BÞ

f iðAÞ f jðBÞ
: [13]

Algorithmic Implementation. The algorithmic implementation of the mean-
field approximation is sketched in the following steps:

1. Estimate the frequency counts f iðAÞ and f ijðA;BÞ from the MSA, using
the pseudocount λ ¼ Meff in Eqs. 1 and 2.

2. Determine the empirical estimate of the connected-correlation matrix
Eq. 10.

3. Determine the couplings eijðA;BÞ according to the second of Eq. 9.
4. For each column pair i < j, estimate the direct information DIij by solving

Eqs. 11 and 12 for PðdirÞ
ij ðA;BÞ, and plug the result into Eq. 13.

An implementation of the code in Matlab is available upon request.

Note Added in Proof. Our direct-coupling analysis was recently used to infer
all-atom protein 3D structures, indicating that the high quality of contact
prediction reported here is capable of translating to good quality predicted
3D folds (50).
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Supplementary text: Direct-coupling analysis of residue co-evolution captures native

contacts across many protein families

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. Marks, C. Sander, R. Zecchina, J.N. Onuchic, T. Hwa, and M. Weigt

I. INPUT DATA

Data are given as a multiple sequence alignment
(MSA), i.e. a rectangular array with entries coming from
a 21-letter alphabet (20 amino acids, 1 gap):

A = (Aa
i ) , i = 1, ..., L, a = 1, ..., M (1)

with L being the number of residues in each MSA row
(the protein length), and M the number of MSA rows
(the number of proteins). For simplicity of notation we
assume that the q = 21 amino acids are translated into
consecutive numbers 1,...,q.

II. SEQUENCE STATISTICS

The aim of the analysis is to detect statistical coupling
between the amino-acid occupancies of any two columns
of the MSA A. For doing so, we first introduce single
site and pair frequency counts,

fi(A) =
1

M

M
∑

a=1

δA,Aa
i
; fij(A, B) =

1

M

M
∑

a=1

δA,Aa
i
δB,Aa

j
,

(2)
with 1 ≤ i, j ≤ L, 1 ≤ A, B ≤ q, and δ denoting the
Kronecker symbol, which equals one if the two indices
coincide, and zero else. The first count determines the
fraction of proteins which show amino acid A in column
i (residue position), the second one the fraction of MSA
rows where amino acids A and B co-appear in positions
i and j.

A. Reweighted frequency counts

These simple frequency counts represent faithfully the
statistical properties of the MSA if and only if rows are
drawn independently from the same distribution. Biolog-
ical sequence data show a strong sampling bias due phy-
logenetic relations between species, due to the sequenc-
ing of different strains of the same species, and due to
a bias in the selection of species which are currently se-
quenced. As a simple correction, we use a reweighting
scheme, which we have introduced in [1, 2].

First, we define a similarity threshold 0 < x < 1: Two
sequences of identity (number of positions with coincid-
ing amino acids) larger than xL are considered to carry
almost the same information, smaller sequence identities
are considered to carry substantially independent infor-
mation. In practical tests we have found that values of x
around 0.7-0.9 lead to very similar results, we use x = 0.8.

Second, for each sequence Aa = (Aa
1 , ..., Aa

L) we deter-
mine the number of similar sequences Ab = (Ab

1, ..., A
b
L)

via

ma =
∣

∣

{

b | 1 ≤ b ≤ M, seqid(Aa, Ab) ≥ xL
}
∣

∣ . (3)

Note that this count is always at least one, since sequence
Aa is counted itself in ma. For each sequence, we use
the weight 1/ma in the frequency counts, i.e., sequences
without similar sequences take weight one, and sequences
featuring similar sequences are down-weighted. We rede-
fine the frequency counts as

fi(A) =
1

λ + Meff

(

λ

q
+

M
∑

a=1

1

ma
δA,Aa

i

)

(4)

fij(A, B) =
1

λ + Meff

(

λ

q2
+

M
∑

a=1

1

ma
δA,Aa

i
δB,Aa

j

)

.

This equation also contains a pseudo-count λ, which is
a standard tool in estimating probabilities from counts
in biological sequence analysis [3]. It serves to regularize
parameters in the case of insufficient data availability,
and has an interpretation in terms of Bayesian inference.

The total weight of all sequences, Meff =
∑M

a=1 1/ma,
can be understood as the effective number of independent
sequences.

Note that using x = 1 would reweight each sequence
by the number of times it appears in the MSA, removing
thus simple repeats. Lower values for x aim at giving
a smaller weight to regions which are more densely sam-
pled, and a higher weight to regions which are less densely
sampled.

B. Mutual information as a correlation measure

If two MSA columns i and j were statistically indepen-
dent, the joint distribution fij(A, B) would factorize into
fi(A) × fj(B), any deviation from this factorization sig-
nals correlations between the columns. Such correlation
can be quantified by the mutual information

MIij =
∑

A,B

fij(A, B) ln
fij(A, B)

fi(A)fj(B)
. (5)

It equals zero if and only if fij(A, B) factorizes into the
single marginals, and it is positive whenever fij(A, B)
does not factorize.

III. MAXIMUM-ENTROPY MODELING

As discussed in the main text, inter-column correla-
tion may be caused by direct statistical coupling, but
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also by indirect correlation effects via intermediate MSA
columns. As shown in [1], such direct and indirect effects
may be disentangled: The idea is to infer a global statis-
tical model P (A1, ..., AL) for entire amino-acid sequences
of the protein domain under study. This model has to
be coherent to the empirical data, i.e. to generate the
empirical single- and two-site frequency counts:

Pi(Ai) =
∑

{Ak|k 6=i}

P (A1, ..., AL) = fi(Ai) (6)

Pij(Ai, Aj) =
∑

{Ak|k 6=i,j}

P (A1, ..., AL) = fij(Ai, Aj) .

Beyond these constraints, we aim at the most general,
i.e. least constrained model P (A1, ..., AL). It can be de-
termined using the distribution maximizing the entropy

S = −
∑

{Ai|i=1,...,L}

P (A1, ..., AL) lnP (A1, ..., AL) (7)

while satisfying the constraints in Eqs. (6). The solution
to this optimization problem is standard [4]: after intro-
ducing constraints via Lagrange multipliers, we find the
analytical form of the distribution:

P (A1, ..., AL) =
1

Z
exp







∑

i<j

eij(Ai, Aj) +
∑

i

hi(Ai)







.

(8)
The Lagrange multipliers hi(A) and eij(A, B) have a sim-
ple interpretation in terms of local amino-acid biases (lo-
cal fields in statistical-physics language) and statistical
residue couplings (coupling strength in statistical-physics
language). Their numerical values have to be tuned such
that the constraints given by Eqs. (6) are respected. The
normalization constant

Z =
∑

{Ai|i=1,...,L}

exp







∑

i<j

eij(Ai, Aj) +
∑

i

hi(Ai)







(9)
is called partition function in statistical physics. For later
convenience, we also introduce the Hamiltonian

H = −
∑

1≤i<j≤L

eij(Ai, Aj) −

L
∑

i=1

hi(Ai) , (10)

such that our probabilistic model reads P (A1, ..., AL) =
exp{−H}/Z.

The major problem in this context is the determina-
tion of the marginal distributions Pi(A) and Pij(A, B)
from P (A1, ..., AL). Doing this exactly by tracing over
all other variables Ai as written in Eqs. (6) would re-
quire an exponential time, which grows like qL with the
length of the aligned proteins. Different strategies have
already been suggested for tackling this problem (most
of them for the restricted Ising model having q = 2): In
[1] we used a message-passing algorithm originally pro-
posed in [5], [6] uses improved Monte Carlo sampling, [7–
9] suggest perturbative expansion schemes, whereas [10]

uses pseudo-likelihoods decoupling inference for different
sites. For an overview over the relative performance of
these algorithms on artificial data see [11].

It is important to note that the partition function itself
contains all necessary information on the marginals, in
particular we have

∂ lnZ

∂hi(A)
= −Pi(A)

∂2 lnZ

∂hi(A) ∂hj(B)
= −Pij(A, B) + Pi(A)Pj(B) . (11)

For later convenience we introduce the connected corre-
lations

Cij(A, B) = Pij(A, B) − Pi(A)Pj(B) , (12)

where indices i, j run from 1, ..., L, whereas A, B from
1, .., q − 1. The significance of excluding A, B = q will
become clear below. Note that we will consider Cij(A, B)
as a L(q−1)×L(q−1)-dimensional matrix, i.e. each pair
(i, A) is interpreted as a parametrization of a single, joint
index.

A. The number of independent parameters

The statistical model in Eq. (8) has
(

N
2

)

q2 + Nq pa-
rameters, but not all of them are independent. In fact,
the consistency conditions in Eqs. (6) are also not inde-
pendent, since the single-site marginals are implied by
the two-site marginals, and all distributions are normal-
ized. Careful inspections unveils

(

N
2

)

(q − 1)2 + N(q − 1)
independent consistency conditions. We may therefore
fix a part of the parameters in Eq. (8). Without loss of
generality, we set

eij(A, q) = eij(q, A) = hi(q) = 0 (13)

for all i, j = 1, .., L and A = 1, ...q. Intuitively, this corre-
sponds to a situation where all couplings and biases are
measured with respect to the state q. The number of
remaining parameters matches now the number of con-
straints, and the solution of the maximum-entropy model
is unique.

B. Small-coupling expansion

The algorithmic approach is based on a systematic
small-coupling expansion, i.e., on a Taylor expansion
around zero coupling. This expansion was introduced
in [12] by Plefka for disordered Ising models (Ising spin-
glasses, corresponding to binary variables with q = 2).
A more elegant derivation was proposed Georges and
Yedidia [13], we generalize their approach to the case
of Potts models with q > 2.

First we introduce the perturbed Hamiltonian

H(α) = −α
∑

1≤i<j≤L

eij(Ai, Aj) −

L
∑

i=1

hi(Ai) , (14)
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depending on the additional parameter α. This param-
eter allows to interpolate between independent variables
for α = 0, and the original model for α = 1. Furthermore
we introduce the so-called Gibbs potential

−G(α) = ln





∑

{Ai|i=1,...,L}

e−H(α)



−

L
∑

i=1

q−1
∑

B=1

hi(B)Pi(B)

(15)
as the Legendre transform of the free energy F = − lnZ.
Whereas the free energy depends canonically on the cou-
plings and the fields, the Gibbs potential depends on
the couplings and the marginal single-site distributions
Pi(A), i.e.

G(α) = G
(

{αeij(A, B)}A,B=1,..,q−1
1≤i<j≤L , {Pi(A)}A=1,...,q−1

i=1,...,L

)

.

(16)
This choice is particularly practical for the following
derivation, since it guarantees the first of Eqs. (6) to be
valid at any α. Note that the Potts variables in this ex-
pression run only up to q − 1. Due to the gauge of the
couplings and the normalization of the marginals, values
for A, B = q are not independent variables.

The fields can be found via the standard expression for
Legendre transforms, cf. Eq. (11),

hi(A) =
∂G(α)

∂Pi(A)
, (17)

and

(

C−1
)

ij
(A, B) =

∂hi(A)

∂Pj(B)
=

∂2G(α)

∂Pi(A) ∂Pj(B)
. (18)

It is worth pointing out that the previous relations hold
at any value of α and are a consequence of the functional
form of the Legendre transform defined in Eq. (15). We
remind that the matrix C was defined in Eq. (12) to
have dimension L(q− 1), i.e. Potts-state indices are con-
strained to values up to q − 1. This restriction makes C
an invertible matrix (at least for non-zero pseudo-count
λ), removing trivial linear dependencies resulting from
the normalization of Pij . Using this last equation, we
can calculate the two-point marginal distributions Pij di-
rectly from the Gibbs potential by means of two partial
derivations and one matrix inversion.

Our aim is to expand this Gibbs potential up to first
order in α around the independent-site case α = 0,

G(α) = G(0) +
dG(α)

dα

∣

∣

∣

∣

α=0

α + O(α2) . (19)

In the following subsections, we calculate the still un-
known terms on the right-hand side of this equations,
i.e. the Gibbs potential and its first derivative in α = 0.

C. Independent-site approximation

To start with, let us consider the Gibbs potential in
α = 0. In this case, the Gibbs potential equals the neg-
ative entropy of an ensemble of L uncoupled Potts spins

A1, ..., AL of given marginals Pi(Ai). This claim results
from basic statistical mechanics: The free energy equals
the average energy (average Hamiltonian) minus the en-
tropy. For α = 0, the Legendre transform removes the
complete average energy.

However, the entropy of uncoupled spins of given dis-
tribution is known to be

G(0) =

L
∑

i=1

q
∑

A=1

Pi(A) lnPi(A)

=

L
∑

i=1

q−1
∑

A=1

Pi(A) lnPi(A) (20)

+

L
∑

i=1

[

1 −

q−1
∑

A=1

Pi(A)

]

ln

[

1 −

q−1
∑

A=1

Pi(A)

]

;

the last line eliminates terms in Pi(q) and reduces the
expression to the independent variables.

D. Mean-field approximation

To get the first order in Eq. (19), we have to determine
dG(α)/dα in α = 0. Recalling the definition of the Gibbs
potential in Eq. (15), we write

dG(α)

dα
= −

d

dα
lnZ(α) −

L
∑

i=1

q−1
∑

A=1

dhi(A)

dα
Pi(A)

= −
∑

{Ai}





∑

i<j

eij(Ai, Aj) +
∑

i

dhi(A)

dα





e−H(α)

Z(α)

−

L
∑

i=1

q−1
∑

A=1

dhi(A)

dα
Pi(A)

= −

〈

∑

i<j

eij(Ai, Aj)

〉

α

. (21)

The first derivative of the Gibbs potential with respect
to α equals thus the average of the coupling term in the
Hamiltonian. At α = 0, this average can be done eas-
ily, since the joint distribution of all variables becomes
factorized over the single sites,

dG(α)

dα

∣

∣

∣

∣

α=0

= −
∑

i<j

∑

A,B

eij(A, B)Pi(A)Pj(B) . (22)

Plugging this and Eq. (20) into Eq. (19), we find the first-
order approximation of the Gibbs potential. First and
second partial derivatives with respect to the marginal
distributions Pi(A) provide self-consistent equations for
the local fields,

Pi(A)

Pi(q)
= exp







hi(A) +
∑

{j|j 6=i}

q−1
∑

B=1

eij(A, B)Pj(B)







(23)
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and the inverse of the connected correlation matrix,

(

C−1
)

ij
(A, B)

∣

∣

∣

α=0
=

{

−eij(A, B) for i 6= j
δA,B

Pi(A) + 1
Pi(q)

for i = j
. (24)

This last equation allows for solving the original inference
problem in mean-field approximation in a single step,
without resorting to iterative schemes like gradient de-
cent. Since we want to fit one- and two-site marginal of
P (A1, ..., AL) to the empirical values fi(A) and fij(A, B)
derived from the original protein MSA, we just need to
determine the empirical connected correlation matrix

C
(emp)
ij (A, B) = fij(A, B) − fi(A) fj(B) (25)

and invert this matrix to get the couplings eij . Even if
matrix inversion is of complexity O(L3) and thus of the
same complexity as susceptibility propagation, the mean-
field approximation is found to be 103−104 times faster.
This results from the simple fact that > 103 iteration are
needed in susceptibility propagation to reach sufficient
precision in fitting the empirical data by the maximum-
entropy model.

IV. DIRECT INFORMATION AS A

DIRECT-COUPLING MEASURE

Given the estimate of the pair couplings eij(A, B) we
would like to rank residue pairs according to their inter-
action strength. To do so, we need a meaningful mapping
from the (q − 1)× (q − 1)-dimensional coupling matrices

to a single scalar parameter. A way to do this which is
independent of the selected gauge, was already proposed
in [1]. The quantity introduced there was called direct

information (DI) and measures the mutual information
due to the direct coupling. To do so, we isolate a pair i, j
of positions and introduce a two-site model

P
(dir)
ij (A, B) =

1

Zij
exp

{

eij(A, B) + h̃i(A) + h̃j(B)
}

(26)
with the coupling being the one inferred before. The
new fields h̃i/j are determined by imposing the empirical
single-site frequency counts as marginal distributions,

fi(A) =

q
∑

B=1

P
(dir)
ij (A, B)

fj(B) =

q
∑

A=1

P
(dir)
ij (A, B) , (27)

and Zij follows by normalization. The direct information

is the mutual information associated to P
(dir)
ij :

DIij =

q
∑

A,B=1

P
(dir)
ij (A, B) ln

P
(dir)
ij (A, B)

fi(A) fj(B)
. (28)

In this expression, any indirect effect is obviously re-
moved, only the strength of the direct coupling eij(A, B)
is measured.
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Figure S1. Mean prediction performance for 131 domain families with respect to the top number
of ranked contacts. The effect of sampling correction by re-weighting (RW), i.e. clustering
redundant sequences for > 80% identity is beneficial for both MI and DI methods. Results with
sampling correction (solid lines) are always better than their counterparts without re-weighting
(dashed lines). Using a different threshold e.g, from 80% to 70% does not have a significant
influence on the mean TP performance.
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Figure S2. Distribution of the ratio Meff /M for the dataset of 131 domain families 
used in this study. MSA for all these families have a mean value of 8,600 sequences
with a mean of 3,600 effective sequences.



Figure S3. Mean prediction performance for 25 eukaryotic domain families with 
more than 2000 sequences. The figure shows equivalent results as the ones 
obtained for bacterial sequences (Fig. 2A and Fig. S5). This suggests that the 
applicability of DI-based predictions to eukayotic is plausible.
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Figure S4. A) Distribution of TP rates for the 131 domains studied and computed with 
the best predicted structures per domain using mfDCA with sampling correction. 
Results are shown for the top 10,20 and 30 predicted pairs. B) Distribution of TP rates
for the 131 domains studied and all PDB structures using mfDCA and sampling 
correction. Top 10,20 and 30 pairs seem to have a peak of the TP rate distribution 
around 0.8-0.9.
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Figure S5. Histogram of all background pairwise atomic distances for 10 
random PDB structures in our dataset. The peak of the distribution around 25 Å 
explains a small bump observed in Figure 2B near the same distance (20-25 Å) 
in the distribution.
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Figure S6. Sensitivity analysis of the performance of mfDCA for random sub-alignments 
of different lengths. Results are shown for two domain families: (A) the Ras domain family
(PF00071) and (B) the DNA-recognition domain (Region 2) of the bacterial Sigma-70 
factor (Pfam ID PF04542) were selected to assess prediction performance for sequence
alignments of size M=100, 500, 1000 and 3000, corresponding to Meff values ranging from 
72 to 1206. Curves are averaged over 100 randomly generated sub-alignments fore each M.
A number of Meff ~ 250 appears to be necessary to get sensitive results, while using 
Meff ~ 1000 reaches results similar to the ones using full alignments.
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Figure S7. A) Protein MexA (PDB ID 1vf7), showing nine secretion and transporter
activity domains HlyD domains (PF00529) forming a funnel like structure used as 
antibiotic efflux. One of two false positives in the top 20 predictions was a 
multimerization couplet, shown in green and red. B) Side view of the complex with 
domains in different colors.
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Figure S8. Cumulative distribution of the Number of Acceptable Pairs (NAPx) for a 
given TP rate x normalized by the length of the domain L. The curves show the 
probability of NAPx to be larger than a given number n for contacts at given TP rates 
of 0.9, 0.8 and 0.7. The curves are computed for all 856 PDB structures in the dataset.
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Figure S9. A) Family of bacterial tripartite tricarboxylate receptors (PF03401), NAP70 
is 600, i.e.,70% of the top 600 DI pairs correspond to true contacts when mapped to 
structure PDB ID 2qpq. B) The extracellular solute-binding family (PF00496) mapped to 
the structure of the periplasmic oligopeptide-binding protein OppA of S. typhimurium 
(PDB ID 1jet) has a NAP70 of 497. Approximately 350 contacts are true positives.
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Figure S10. Comparison of the probability function of the Number of 
Accepted Pairs (NAP70) to be larger than a certain number of pairs for 
three methods: DI, Bayesian approach and MI. DI shows a clear impro-
vement against MI (red curve) and the Bayesian approach by Burger 
et al. (dashed red) which becomes more evident as NAP grows larger.
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Figure S11. Performance of mfDCA for different values of the pseudocount 
parameter λ . Mean TP rates are shown for two domain families (A) the Ras
domain family (PF00071) and (B) the DNA-recognition domain (Region 2) of
the bacterial Sigma-70 factor (Pfam ID PF04542). The pseudo-count values 
used depend on the number of effective sequences Meff and a weighting pa-
rameter, pseudo-count weight w as λ = w Meff. Mean TP rates are computed 
for different w values between 0.11 and 9. A relatively small variance in perfor-
mance for values of w > 0.5 is observed with the optimum between 1-1.5. 
λ = Meff was used as a fixed parameter in all the results shown in this study.



Figure S12. Comparison of different DCA approximations for (A) Trypsin (PF00089,
PDB 3TGI) and (B) Trypsin inhibitor (PF00014, PDB 5PTI). Whereas all DCA algorithms
outperform the contact prediction by mutual information (green line), we find the new 
mfDCA (blue line) to be superior to the previous mpDCA (red line). Going beyond mfDCA
to the next order of the smallcoupling expansion (tapDCA, pink line), cf. Methods, does 
not systematically improve over mfDCA, but leads to a substantially slower algorithm. 
The fact that the red curve in panel A finishes at a smaller number of pairs results from 
the fact, that mpDCA can be run only on subalignments of up to 70 columns due to the 
algorithmic complexity of the approach.



Table S1. List of PDB structures analyzed in this study. 

PDB IDs 
153l 
154l 
1a04 
1a0b 
1a0p 
1ae9 
1al3 
1atg 
1b7e 
1b9m 
1b9n 
1bia 
1bib 
1bl0 
1boo 
1bsl 
1byi 
1byq 
1c02 
1c52 
1c5k 
1c75 
1cb7 
1ccw 
1cp2 
1crx 
1crz 
1ctj 
1d4a 
1d5y 
1dad 
1dae 
1dag 
1dah 
1dai 
1dak 
1dd9 
1dde 
1di6 
1di7 
1dlj 
1dts 
1dur 
1e2x 
1e3u 
1e4d 
1e4f 
1e4g 
1e8c 
1ecl 
1efa 
1efd 
1eg2 
1ek9 
1esz 
1etk 

1gbs 
1gdt 
1gg4 
1gqy 
1gu9 
1gug 
1gun 
1gus 
1gut 
1h3l 
1h4i 
1h7l 
1h7q 
1h8z 
1h98 
1h9g 
1h9j 
1h9k 
1h9m 
1h9s 
1hfe 
1hm9 
1hw1 
1hxd 
1i0r 
1i1g 
1i52 
1i58 
1i5n 
1i74 
1i8o 
1i9c 
1icr 
1id0 
1id1 
1ihc 
1ihr 
1ihu 
1ii0 
1ii9 
1ini 
1inj 
1ir6 
1iuj 
1ixc 
1ixg 
1ixh 
1iz1 
1j5y 
1j6u 
1jbg 
1jbw 
1je8 
1jet 
1jeu 
1jev 

1lqp 
1lr0 
1ls9 
1lsp 
1lss 
1luc 
1lvw 
1m65 
1m68 
1m6k 
1m70 
1m7j 
1ma7 
1mb3 
1mdo 
1mkm 
1mkz 
1mm8 
1mnz 
1moq 
1muh 
1mur 
1mus 
1muw 
1mv8 
1mw8 
1mw9 
1n2z 
1n9l 
1n9n 
1nfp 
1nki 
1nly 
1nnf 
1nox 
1nqe 
1nw5 
1nw6 
1nw7 
1nw8 
1nwz 
1ny5 
1ny6 
1o1h 
1o2d 
1o61 
1o69 
1o7l 
1oad 
1oap 
1odd 
1odv 
1oj7 
1olt 
1opc 
1opx 

1qgs 
1qhg 
1qhh 
1qks 
1qpz 
1qsa 
1qte 
1qtw 
1qu7 
1qwy 
1qxx 
1r1m 
1r1t 
1r1u 
1r23 
1r62 
1r8d 
1r8e 
1r9x 
1r9y 
1r9z 
1ra0 
1ra5 
1rak 
1req 
1rhc 
1rio 
1rk6 
1rp3 
1rrm 
1rtt 
1rzu 
1rzv 
1s5m 
1s5n 
1s8n 
1sfx 
1sg0 
1si0 
1sig 
1sly 
1sqe 
1sqs 
1sum 
1suu 
1t3t 
1t5b 
1t72 
1ta9 
1td5 
1tf1 
1tqg 
1tqq 
1tv8 
1tvl 
1tzb 

1vz0 
1w55 
1w6s 
1w77 
1w78 
1w8i 
1wet 
1wmi 
1woq 
1wp1 
1wpm 
1wpn 
1wpp 
1ws6 
1x74 
1x9h 
1x9i 
1xa3 
1xc3 
1xd7 
1xi2 
1xja 
1xk6 
1xk7 
1xkw 
1xkz 
1xma 
1xo0 
1xoc 
1xw3 
1y0h 
1y1z 
1y20 
1y7m 
1y7y 
1y80 
1y82 
1y9u 
1yc9 
1ydx 
1ye5 
1yf2 
1yg2 
1yio 
1yiq 
1ylf 
1yoy 
1ysp 
1ysq 
1yvi 
1z05 
1z19 
1z7u 
1zat 
1zi0 
1zlj 

2bkn 
2bko 
2bkp 
2bm4 
2bm5 
2bm6 
2bm7 
2bnm 
2brc 
2byi 
2c2a 
2c81 
2ce0 
2cg4 
2ch7 
2cvi 
2cwq 
2cyy 
2d1h 
2d1v 
2d5m 
2d5n 
2d5w 
2dbb 
2dek 
2df8 
2dg6 
2di3 
2dql 
2dvz 
2dxw 
2dxx 
2e15 
2e1n 
2e4n 
2e5f 
2e7w 
2e7x 
2e7z 
2eb7 
2ecu 
2efn 
2eh3 
2ehl 
2ehz 
2ek5 
2esh 
2esn 
2esr 
2ewn 
2ewv 
2eyu 
2f00 
2f2e 
2f5x 
2f6g 

2gd9 
2gj3 
2gjg 
2gkg 
2glk 
2gm5 
2gms 
2gmy 
2gqp 
2gsk 
2gu1 
2guf 
2guh 
2gup 
2gxg 
2gza 
2h1c 
2h98 
2h99 
2h9b 
2haw 
2hek 
2heu 
2hkl 
2hmt 
2hmu 
2hmv 
2hnh 
2hoe 
2hof 
2hph 
2hq0 
2hqs 
2hs5 
2hsg 
2hsi 
2hwv 
2hxv 
2i0m 
2i5r 
2ia2 
2ia4 
2ibd 
2ict 
2ift 
2ikk 
2ipl 
2ipm 
2ipn 
2is1 
2is2 
2is4 
2is6 
2is8 
2iu5 
2iuy 

2oqg 
2oqr 
2oxo 
2oyo 
2p19 
2p4g 
2p5v 
2p7o 
2paq 
2pbq 
2pfx 
2ph1 
2pjr 
2pkh 
2pmh 
2pn6 
2pq7 
2pt7 
2puc 
2pud 
2px7 
2q0o 
2q0t 
2q1z 
2q4f 
2q8p 
2qb6 
2qb7 
2qb8 
2qcz 
2qdf 
2qdl 
2qeu 
2qgq 
2qgz 
2qi9 
2qj7 
2qm1 
2qmo 
2qpq 
2qsx 
2qwx 
2qx4 
2qx6 
2qx8 
2r01 
2r0x 
2r1j 
2r25 
2r4t 
2r6g 
2r6o 
2r6v 
2ra5 
2rb9 
2rc7 

2z1e 
2z1f 
2z1u 
2z2l 
2z2m 
2z4g 
2z4p 
2z6r 
2z8x 
2z98 
2z9b 
2zau 
2zbc 
2zc3 
2zc4 
2zcm 
2zdp 
2zf8 
2zie 
2zif 
2zig 
2zki 
2zkz 
2zod 
2zov 
2zxj 
3b4y 
3b6i 
3b8x 
3b9o 
3bcv 
3be6 
3bem 
3bg2 
3bhq 
3bkh 
3bkv 
3bm7 
3bpk 
3bpq 
3bpv 
3bqx 
3bre 
3bs3 
3bvp 
3bwg 
3c1q 
3c29 
3c3w 
3c48 
3c57 
3c7j 
3c85 
3c8f 
3c8n 
3c9u 

3e10 
3e38 
3e4r 
3e4v 
3e7l 
3e8o 
3eag 
3ec2 
3ecc 
3ech 
3ecp 
3edp 
3eet 
3efm 
3eiw 
3eix 
3eko 
3elk 
3eus 
3ex8 
3eyw 
3ezu 
3f1c 
3f1n 
3f1o 
3f1p 
3f2b 
3f44 
3f52 
3f6c 
3f6o 
3f6v 
3f8b 
3f8c 
3f8f 
3fd3 
3fgv 
3fis 
3fms 
3fwy 
3fwz 
3fxa 
3fzv 
3g13 
3g5o 
3g7r 
3gdi 
3gfa 
3gfv 
3gfx 
3gfy 
3gfz 
3gg0 
3gg1 
3gg2 
3ghj 



1eto 
1etv 
1etw 
1etx 
1ety 
1ezw 
1f07 
1f1u 
1f44 
1f48 
1f5v 
1f9i 
1fca 
1fdn 
1fep 
1fia 
1fip 
1fp6 
1fr3 
1fse 
1fxo 
1g1l 
1g1m 
1g20 
1g28 
1g5p 
1g60 
1g6o 
1g72 
1g8k 

1jft 
1jh9 
1jiw 
1jlj 
1jnu 
1jpu 
1jq5 
1jyk 
1k20 
1k2v 
1k38 
1k4f 
1k54 
1k56 
1kap 
1kb0 
1kbu 
1kgs 
1kmo 
1kmp 
1kq3 
1ku3 
1ku7 
1kv9 
1kw3 
1kw6 
1l3l 
1lj9 
1lq9 
1lqk 
 

1or7 
1ot6 
1ot9 
1ota 
1otb 
1oxk 
1p2f 
1p31 
1p3d 
1p7d 
1p9r 
1p9w 
1pb0 
1pb7 
1pb8 
1pjr 
1pnz 
1po0 
1pt7 
1pvp 
1q05 
1q06 
1q07 
1q08 
1q09 
1q0a 
1q35 
1q7e 
1qg8 
1qgq 
 

1tzc 
1u07 
1u2w 
1u8b 
1u8t 
1uaa 
1uc8 
1uc9 
1us4 
1us5 
1usc 
1usf 
1uux 
1uuy 
1uyl 
1v4y 
1v51 
1v8p 
1v96 
1vct 
1ve2 
1vf7 
1vgt 
1vgw 
1vhd 
1vhv 
1vim 
1vj7 
1vke 
1vlj 

1zvt 
1zvu 
1zzc 
2a0b 
2a3n 
2a5h 
2a5l 
2a61 
2aa4 
2aac 
2ad6 
2ad7 
2ad8 
2aef 
2aej 
2afh 
2am1 
2anu 
2ap1 
2ar0 
2ara 
2arc 
2azn 
2b02 
2b0p 
2b13 
2b3z 
2b44 
2bas 
2bfw 

2f6p 
2f7a 
2f7b 
2f8l 
2f9f 
2fa1 
2fa5 
2fb2 
2fbh 
2fcj 
2fdn 
2fe1 
2fez 
2ff4 
2ffu 
2fhp 
2fn9 
2fnu 
2fpo 
2fsw 
2fvy 
2fw0 
2g2c 
2g6v 
2g7u 
2gai 
2gaj 
2gci 
2gd0 
2gd2 

2iv7 
2iw1 
2iw4 
2iwx 
2jba 
2jcg 
2jfg 
2nip 
2npn 
2nq2 
2nq9 
2nqh 
2nt3 
2nt4 
2o08 
2o0y 
2o3j 
2o4d 
2o7i 
2o7p 
2o8x 
2o99 
2o9a 
2obc 
2ofy 
2ogi 
2ojh 
2okc 
2olb 
2ooc 

2rc8 
2rca 
2rde 
2rii 
2ril 
2rsl 
2uag 
2v25 
2v2k 
2v9y 
2vha 
2vjq 
2vk2 
2vke 
2vkr 
2vlg 
2vma 
2vmb 
2vpz 
2vsh 
2w27 
2w8b 
2w8i 
2yve 
2yx0 
2yxb 
2yxo 
2yxz 
2yye 
2yz5 

3can 
3ccg 
3cij 
3cix 
3ckj 
3ckn 
3ckv 
3clo 
3cnr 
3cnv 
3cp5 
3ctp 
3cuo 
3cwr 
3cx4 
3cyi 
3cyp 
3cyq 
3d5k 
3d6z 
3d7i 
3dbo 
3df7 
3df8 
3dma 
3dr4 
3drf 
3drj 
3dsg 
3du1 
 

3gp4 
3gpv 
3gr3 
3guv 
3h4o 
3h5t 
3h87 
3hfi 
3hh0 
3hhh 
3hl0 
3hmz 
3hn7 
3hoi 
3htv 
3hvw 
3pyp 
3uag 
4aah 
4crx 
4req 
4uag 
5req 
6req 
7req 
8abp 

 
 
 

 

 

 

 

 

 

 



 
 
Table S2. List of Pfam domain families analyzed in this study. 

Pfam Domain Names 

ABM 
AIRS 
AIRS_C 
AP_endonuc_2 
ATP-grasp_3 
Amidohydro_3 
AraC_binding 
ArsA_ATPase 
AsnC_trans_reg 
B12-binding 
BPD_transp_1 
Bac_luciferase 
Bug 
CMD 
CbiA 
CheW 
CoA_transf_3 
Cons_hypoth95 
Cytochrom_C 
DHH 
DHHA1 
DNA_gyraseA_C 
DegT_DnrJ_EryC1 
EAL 
FCD 
FMN_red 
 

Fe-ADH 
FecCD 
Fer4 
Fer4_NifH 
Flavin_Reduct 
Flavodoxin_2 
FtsA 
GGDEF 
GSPII_E 
GSPII_F 
GerE 
Glycos_transf_1 
Glycos_transf_2 
Glyoxalase 
GntR 
HATPase_c 
HD 
HTH_1 
HTH_11 
HTH_3 
HTH_5 
HTH_8 
HTH_AraC 
HTH_IclR 
HemolysinCabind 
HisKA 

HlyD 
Hpt 
HxlR 
IclR 
IspD 
IstB 
LacI 
LysR_substrate 
MCPsignal 
MarR 
MerR-DNA-bind 
MerR 
Methylase_S 
MoCF_biosynth 
Molybdopterin 
Molydop_binding 
Mur_ligase 
Mur_ligase_C 
Mur_ligase_M 
N6_Mtase 
N6_N4_Mtase 
NMT1 
NTP_transferase 
Nitroreductase 
OEP 
OmpA 
 

PAS 
PASTA 
PAS_3 
PD40 
PHP 
PIN 
PQQ 
PadR 
ParBc 
Pentapeptide 
Peptidase_M23 
Peripla_BP_1 
Peripla_BP_2 
Phage_integr_N 
Phage_integrase 
PhoU 
PilZ 
Plasmid_stabil 
Plug 
ROK 
Radical_SAM 
Resolvase 
Response_reg 
RibD_C 
RimK 
Rrf2 
 

SBP_bac_1 
SBP_bac_3 
SBP_bac_5 
SIS 
SLBB 
SLT 
Sigma54_activat 
Sigma70_r2 
Sigma70_r4 
Sigma70_r4_2 
Surf_Ag_VNR 
TOBE 
TOBE_2 
TP_methylase 
TetR_N 
TonB 
TonB_dep_Rec 
Toprim 
Trans_reg_C 
Transpeptidase 
Transposase_11 
TrkA_N 
TrmB 
UDPG_MGDP_dh_N 
UTRA 
UvrD-helicase 
YkuD 

 

 

 

 

 

 

 

 

 



 
 
Table S3. Pfam domain families and their respective PDB structure with 

oligomerization TP contacts. 

Pfam Domain  PDB structure 

AsnC_trans_reg 
Bac_luciferase 
CMD 
EAL 
Flavodoxin_2 
FMN_red 
Glyoxalase 
GSPII_E 
HlyD 
Hpt 
HTH_IclR 
HxlR 
IspD 
MCPsignal 
MerR-DNA-bind 
Mur_ligase 
Resolvase 
Sigma54_activat 
TOBE 
TOBE_2 
TP_methylase 

2z4p 
3b4y 
1vke 
2r6o 
1t5b 
2a5l, 2q62 
2p7o 
2gza 
2f1m,1t5e 
1i5n 
2g7u 
2f2e 
3f1c 
2ch7 
3gp4 
2am1 
2gm5 
1ny6 
1h9s 
2awn 
1vhv 

 

 

 

 

 

 

 

 

 



Table S4. Top-30 prediction of mfDCA for the Serine protease data of (41). The first 
two columns specify the residue pair, the third column provides the DI value, and the 
last one the native distance in rat trypsin (PDB ID 3tgi). Residues belonging to the 
sectors defined in (41) are indicated, using the color scheme of (41). 

	
  

Res. 1 Res. 2 DI Dist/Å 
136 
32 

191 
189 
57 
42 
44 
30 
72 
72 
59 
51 

190 
34 

116 
26 
45 

117 
46 
71 
71 

117 
161 
138 
116 
53 

189 
100 
102 
27 

201 
40 

220 
226 
195 
58 
52 

139 
77 
78 

104 
105 
213 
40 

127 
157 
209 
127 
112 
78 
79 

122 
184 
213 
122 
209 
228 
179 
195 
157 

0.52 
0.47 
0.37 
0.34 
0.34 
0.28 
0.25 
0.25 
0.24 
0.23 
0.23 
0.22 
0.20 
0.19 
0.18 
0.18 
0.18 
0.17 
0.16 
0.15 
0.15 
0.15 
0.15 
0.14 
0.14 
0.14 
0.13 
0.13 
0.13 
0.13 

2.0 
2.8 
2.2 
3.3 
2.7 
2.0 
4.3 
2.7 
3.0 
8.0 
3.9 
3.8 
3.7 
3.4 

23.7 
4.9 
3.8 

23.9 
4.0 
8.5 
6.9 

13.3 
3.1 
4.2 

13.1 
3.5 
3.9 
2.3 
6.1 
3.8 
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