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Abstract

Two-component signal transduction systems enable cells in bacteria, fungi, and

plants to react to extracellular stimuli. A sensor histidine kinase (SK) detects

such stimuli with its sensor domains and transduces the input signals to a

response regulator (RR) by trans-phosphorylation. This trans-phosphorylation

reaction requires the formation of a complex formed by the two interacting

proteins. The complex is stabilized by transient interactions. The nature of the

transient interactions makes it challenging for experimental techniques to gain

structural information. X-ray crystallography requires stable crystals, which are

difficult to grow and stabilize. Similarly, the mere size of these systems proves

problematic for NMR. Theoretical methods can, however, complement existing

data. The statistical direct coupling analysis presented in the previous chapter

reveals the interacting residues at the contact interface of the SK/RR pair.

This information can be combined with the structures of the individual proteins

in molecular dynamical simulation to generate structural models of the

complex. The general approach, referred to as MAGMA, was tested on the
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44 Alexander Schug et al.
sporulation phosphorelay phosphotransfer complex, the Spo0B/Spo0F pair,

delivering crystal resolution accuracy. The MAGMA method is described here

in a step-by-step explanation. The developed parameters are transferrable to

other SK/RR systems.
1. Introduction

Two-component signal transduction systems (TCS) enable bacteria,
fungi, and plants to respond to stimuli and changes of environments like
nutrients, light, or pressure (for a recent review see Mascher et al., 2006).
They consist of two proteins, a sensor histidine kinase (SK) and a response
regulator (RR). The multidomain SK consists of intra- and/or extracellular
sensor domains and a catalytic histidine kinase core (reviewed in Szurmant
et al., 2007). The latter can be subdivided into the phosphorylatable histi-
dine containing HisKA domain and the catalytic ATP-binding ATPase
domain. In response to a stimulus, the phosphoryl flux between the SK
and the RR is modulated. As a first step, the histidine on the HisKA domain
is autophosphorylated. In a second step, this phosphoryl group is transferred
to an aspartate residue on the RR protein, which most commonly serves as
a transcription factor (Galperin, 2006).

Extended versions of the TCS signal transduction pathway are the phos-
phorelays (Hoch, 2000). In these systems, the phosphoryl flux between the
SK and the RR is mediated by a second single domain RR and a phospho-
transferase in a His-Asp-His-Asp phosphotransfer cascade. The phosphotrans-
ferase protein can feature either a monomeric four-helix bundle Hpt domain
(also utilized by the chemotaxis histidine kinase, CheA) or a second dimeric
four-helix bundle HisKA-like domain (Hoch and Varughese, 2001). The
latter form of phopsphorelay is exemplified by the well-described sporulation
phosphorelay of the Bacilli, which connects five SK KinA–KinE with the
sporulation RR Spo0A via the single domain RR Spo0F and the HisKA-like
phosphotransferase Spo0B (Burbulys et al., 1991; Jiang et al., 2000).

The phosphotransfer complex between HisKA and RR domains is ruled
by transient interactions. While many individual TCS proteins have been
structurally resolved, these transient interactions result in short-lived and
unstable complexes, which have proven resistant to structural resolution by
experimental means. For this reason, as of August, 2009, the complex of
above described Spo0F and Spo0B proteins of the Bacillus subtilis sporulation
phosphorelay remains as the only published structural example of a HisKA–
RR pair, trapped in the act of phosphotransfer (Zapf et al., 2000).

This lack of structural templates hampers theoretical structure-prediction
methods. Established methods like homology modeling (Eswar et al., 2008)
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rely on the presence of such templates with high sequential similarity. Physics-
based approaches (Fujitsuka et al., 2004; Hardin et al., 2002; Schug et al.,
2005a) struggle with the accuracy of the underlying force-fields, especially for
mixed a-helical/b-sheet structures (Best et al., 2008). Even assuming perfect
suitability of a specific force-field, the mere size of TCS protein complexes
might make such prediction methods computationally prohibitive by requir-
ing searches of huge conformational spaces with accordingly high numbers of
degrees of freedom (‘‘problem of sampling’’) (Schug and Wenzel, 2006;
Schug et al., 2005b). Currently, no reliable ‘‘gold standard’’ for the prediction
of protein complexes has been found as demonstrated by the CAPRI
competitions, in which different approaches at protein–protein docking are
compared ( Janin et al., 2003).

Not all is bad news, however. The current ongoing ‘‘genomic revolu-
tion’’ provides scientists with a wealth of sequential information and com-
plete genomes for an exponentially growing number of systems. As TCS are
ubiquitously used and highly amplified in bacteria, fungi, and plants, one
can take advantage of the abundance of sequential information. The direct
coupling analysis (DCA) (Weigt et al., 2009), presented in the previous
chapter, investigates the mutational patterns of coevolving protein like the
SK/RR pair in TCS and has three subsequent steps. The first step is a
homology search of the two target sequences in as many bacterial genomes
as possible. The second step constitutes aligning the sequences and
performing a covariance analysis. This reveals pairs of amino acids with
high mutual information in the two proteins. In a third step, a statistical
inference analysis distinguishes between pairs, which directly interact, from
such, which are indirectly correlated, that is, for which the correlation is
mediated by additional residue positions. These three steps result in a set of
directly interacting pairs of amino acids between the SK and the RR, that is
residue positions, which lie on the interface of the two proteins (here
thereto referred as DI contacts). This information describes the evolutionary
most crucial interactions of the surface and is therefore by itself of high
scientific interest. It becomes, however, even more valuable when com-
bined with molecular dynamical (MD) simulations.

MD-simulations approximate the physics of an entire system of inter-
acting biomolecules over a defined period of time. Typically, one has to
balance the accuracy of description/physics with the available computa-
tional resources (Adcock and McCammon, 2006). Here, we employ native
structure-based simulations (SBS), which are highly successful in describing
protein folding (Clementi et al., 2001; Onuchic and Wolynes, 2004;
Onuchic et al., 1997), conformational transitions related to protein function
(Schug et al., 2007; Whitford et al., 2007), RNA folding and function
(Thirumalai and Hyeon, 2005; Whitford et al., 2009b), and protein–protein
interactions (Levy and Onuchic, 2006; Levy et al., 2007), and make
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prediction in agreement with experimental measurements (Clementi and
Plotkin, 2004; Gambin et al., 2009). They describe protein/RNA dynamics
based on a specific structural conformation, which is usually the native state.
This results in a concise Hamiltonian and allows adopting the level of
coarse-graining to the individual scientific question (Lammert et al., 2009;
Oliveira et al., 2008; Schug et al., 2009a; Whitford et al., 2009a).

We previously demonstrated that combining complementary indepen-
dent information, the coevolutionary information obtained from DCA and
structural data of the unbound monomers, by SBS can predict a TCS
complex in agreement with experimental data (see Fig. 3.1) (Schug et al.,
2009b). The approach will hereafter be referred to as MAGMA (Molecular
dynamics And Genomic information for Macromolecular Assembly). The
MAGMA method along with some of its results is described here in some
detail. Relying on the DCA analysis of subtle mutational patterns is an
orthogonal approach to typical structure-prediction methods like homology
modeling, which rely on highly conserved residues in sequential and structural
libraries. The ultimate aim is, however, not stopping at protein structure
prediction. Right now, we only use DCA to determine interacting residues
Sequential
databaseInput

Target sequences
of complex

Structural
database

Direct coupling analysis Unbound structures

Docking by
structure-based model

Relaxation in empirical
physics-based force-field

Output Atomically resolved
simulation of docking

Prediction of complex
(direct validation)

1

2

Figure 3.1 Flow-chart of the MAGMA approach. Given the target sequence of an
unknown protein complex, direct-coupling analysis (DCA, see previous chapter)
investigates statistical fluctuations of mutational pattern in sequential homologues and
suggests pairwise contacts defining an interaction surface. Similarly, unbound structures
for the given target sequences can be either directly extracted from a structural database
or generated by structure-prediction methods like homology modeling. This informa-
tion of the unbound structures and interaction surface contacts is sufficient information
for docking simulations in computationally efficient structure-based models, providing
both insight into the mechanism of docking and making a prediction of the protein
complex. To improve the quality of the prediction, it can be additionally relaxed in
physics-based empirical force fields.
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at the intermolecular docking interface of RR and SK. We hope to
combine the additional DCA intramolecular information with molecular
simulations to generate realistic descriptions of the conformational changes
underlying the biological function of biomolecules. In the context of TCS,
that would be the simulation of conformational changes during autopho-
sphorylation, docking of the RR to the SK, phosphoryl-transfer, and the
final dissociation of RR and SK in the absence of detailed experimental
structural data for each step.
2. Methods

2.1. Structure-based simulations

Structure-based simulations are used in protein folding simulations based on
the funneled energy landscape and the principle of minimal frustration.
Accordingly, evolution shapes and concurrently smoothens the energy
landscape of proteins by ensuring a dominance of interactions present in
the native state during the entire folding process (Bryngelson et al., 1995;
Frauenfelder et al., 1991; Onuchic and Wolynes, 2004). This guiding bias
prevents entrapment in minima representing nonnative folds. It also pro-
vides a degree of robustness, permitting protein folding and function despite
moderate environmental changes or mutations.

In folding simulations, native structure-based models1 represent the ideal
case of a perfectly funneled energy landscape where only interactions
present in the native state are taken into account and no energetic frustration
occurs. They have shown to be in high agreement with experimental
measurements (Chavez et al., 2004; Cheung et al., 2003; Clementi et al.,
2000). In a typical mathematical description, each amino acid is represented
as a single Ca-bead. Bridging these methods toward empirical all-atom force
fields, variants using multiwelled Gaussians for the contacts (Lammert et al.,
2009), CaCb (Finke et al., 2004; Oliveira et al., 2008) or all-atom represen-
tations have been developed (Linhananta and Zhou, 2002; Shimada et al.,
2001;Whitford et al., 2009a; Zhou et al., 2003). As the latter incorporate the
details of packing best while maintaining computational tractability, we
choose (Whitford et al., 2009a) as a basis for our docking simulations (the
Hamiltonian is given as Eq. (3.1)):
1 Structure-based models are often referred to as Go-models.
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with Kr ¼ 100kBT (Å2), Ky ¼ 20kBT, Kw ¼ 20kBT, and eNC ¼ 0.01kBT.
The values for r0, y0, w0, F0, and sij are given by the native conformation.
An illustration of the different terms can be found in Figs. 3.2 and 3.3. Both
impropers/planar and backbone denote dihedral terms, pending on how
rigid they are in the structure (for a thorough discussion see Oliveira et al.,
2008). i and j run over all atoms and rij is the distance between any two
atoms. An attractive interaction with eC(i, j )¼1kBT and eNC(i, j ) ¼ 0kBT is
assigned to natively interacting residues, while eC(i, j)¼1kBT and eNC(i, j)
¼ 0.01kBT enforce an excluded volume for noninteracting residues. sij is
the native distance between interacting residues and set to 2.5 Å for
noninteracting residues. The dihedral strengths KBB and KSC are assigned
in a way that the interaction energy between the sidechains and the back-
bones is balanced 2:1 and the total contacts energy (determined by the total
number of contacts) is balanced 2:1 against the total sidechain energy
(Whitford et al., 2009a).
1 2 1 2
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A B

1 2 4
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Figure 3.2 Illustration of the different interactions. The backbone interactions of
native structure-based simulations have three contributions. A harmonic pair interac-
tion or 1–2 interaction (A) involves two atoms and describes the vibrations around a
harmonic bond. The angle term or 1–3 interaction (B) is given by the angle between the
bonds 1–2 and 2–3. Finally, the dihedral term (C) or 1–4 interaction is defined as the
angle between two planes. In the example, atoms 1–3 span the first plane and atoms 2–4
the second plane.
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Figure 3.3 Illustration of the contact potential. The Lennard-Jones-type contact
potential of structure-based models biases against distances much shorter than the
contact distance sij while providing an attractive basin for values around the distance.
This results from the repulsive (sij/rij)

12-term, which dominates for short distances
(solid line, sij ¼ 4 Å) and prevents overlap of the electron shells of any two atoms.
Typically, structure-based models have an attractive (sij/rij)

6 or (sij/rij)
10-term for

natively interacting residues (dashed lines) with the former being ‘‘softer’’ (longer
bars) and the latter being more localized (shorter bars).
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2.1.1. Deriving parameters for molecular docking simulations
SBS allow direct modeling of the independent protein monomers, which
shall be docked. For docking, however, we need to introduce a priori
unknown interprotein forces. A weak harmonical center-of-mass force for
all atoms (k ¼ 0.25 � 10�6kBT, Å

2) simulates a sufficient molecular con-
centration of both molecules to bring the proteins into frequent contact
with each other (Schug et al., 2007).

Another crucial term in MAGMA is the specific inclusion of the DCA-
predicted residue pairs (see previous chapter and Weigt et al., 2009). These
predicted direct interactions at the surface will determine the exact orienta-
tion of the two molecules with respect to each other (‘‘docking pose’’). The
most natural implementation of these interactions is as additional contacts.
To prevent any bias or artifacts from overfitting to a dataset, we choose a
homogenous distance for these contacts between the corresponding Ca
atoms. As typically two amino acids, which are in contact with each other
interact by 3–6 contacts between individual atoms on the all-atom level, the
contact strength between the Ca atoms should account for the total inter-
action between the amino acids and was hence increased fivefold. We tested
contact distances between 5.5 and 7 Å, which is the range of average
contact distances2 over a range of reduced temperatures (1/3–2/3), all
well below folding temperature to ensure fast convergence to a docked
complex (‘‘kinetic simulations’’).
2 It is important not to overestimate the contact distance.Otherwise the repulsive part of the van derWaals contact
potential will dominate the interaction and prevent close approach of the interacting residues (see Fig. 3.3).
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2.1.2. Test: Docking of the Spo0B/Spo0F complex
To develop and test our parameters, we choose the described Spo0B/Spo0F
system, since both, structures of the individual proteins (pdb-codes: 1pey,
Mukhopadhyay et al., 2004; and 1ixm, Varughese et al., 1998) and a
structure of the complexed crystal (1f51; Zapf et al., 2000) have been
determined (see also Figs. 3.4 and 3.5).

In the case of several copies of a protein in a pdb-file, for example, as a
result from crystal packing, one has to choose a representative conforma-
tion. We choose as a consistent but somewhat arbitrary choice the first
representation in each pdb-file. The two proteins are then combined into
one pdb-file with consecutively numbered amino acids and atoms.3 It is
important to check that the two proteins do not overlap, as the resulting
atomic clashes will stop the MD-simulations. If the proteins overlap or if
one wants to speed up the subsequent docking simulations, the two proteins
can be brought into spatial vicinity of each other with the docking interfaces
close to each other and without overlap of the atoms by using, for example,
the VMD software (Humphrey et al., 1996) (Mouse ! Move ! Fragment
and Mouse ! Rotate).
Figure 3.4 The Spo0B/Spo0F complex. The phosphotransferase Spo0B/Spo0F
system is part of a phosphorelay in the sporulation pathway of Bacillus subtilis. (Left)
The crystal structure (PDB-ID 1f51) shows Spo0B (light gray) and Spo0F (dark gray).
The residues His30 and Asp54 responsible for the phosphoryl-transfer are highlighted
in black. (Right) DCA identifies 6 residue pairs, which are highly directly correlated
(black) at the interface of the two proteins. Docking simulations using this information,
information about the spatial vicinity of the His-Asp pair (also black), and the unbound
protein structures generate a structural model in high agreement with the experimental
structure (Ca-RMSD < 3 Å).

3 The consecutive numbering avoids ambiguities, for example, when software packages ignore the chain
identifier.
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Figure 3.5 Contact maps of the Spo0B/Spo0F complex. The contact maps of (left) the
crystal structure and (right) the prediction agree well. The axes denote the consecu-
tively numbered residues of Spo0B-A (1–192), Spo0B-B (193–384), and Spo0F (385þ).
The DCA-contacts and the Asp-His pair are highlighted as circles. The quadrant, which
contains the contacts of the interface region of the complex shows in addition to these
explicitly included contacts other contacts formed in the crystal structure which have
not been found by DCA. Some of these ‘‘missing’’ contacts are reconstituted in our
docking simulations. It seems therefore possible that this subset of contacts consists of
the crucial contacts for docking based on two facts: (A) DCA identifies them to have
statistically strongly linked coevolution compared to all possible interface contact pairs
and (B) they are sufficient information for successful reconstitution of the protein
complex in docking by MAGMA.
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The next step is preparing the docking simulations. Here, we use the
GROMACS software package (Kutzner et al., 2007; Van Der Spoel et al.,
2005). The required files for the simulations can be created by, for example,
the webpage http://sbm.ucsd.edu (prepare a simulation, default parameters
except contact map: Cut-off instead of shadow-map; the same webpage also
contains a small tutorial into structure-based simulations). One receives two
files, the gro-file with the atomic coordinates and a top-file with simulation
parameters. In order to add the DCA-contacts, one has to edit the top-file
using a text-editor right after the [pairs]-entry. The format is:

[pairs]
i j CðsijÞ6 CðsijÞ12
i and j are the atom numbers between which a Lennard-Jones-type contact
potential is introduced, sij designates the desired contact distance in nm (we
suggest 0.7 nm, see below), and C is the contact strength. For Spo0B/
Spo0F, DCA predicts six contacts with significant direct information (see
Table 3.1) (Weigt et al., 2009).4 The crucial His30–Asp54 interaction
4 As discussed in the previous chapter the top 10 DI pairings are contacts that could have been included for
docking analysis. For the present analysis only the six high DI contacts that also showed above threshold
mutual information, as published in Weigt et al. (2009) were considered. We do not anticipate that results
would change much if the additional four pairings are included since they involve the same response
regulator and sensor kinase residues.

http://sbm.ucsd.edu
http://sbm.ucsd.edu


Table 3.1 Variation of Ca–Ca contact distances in docking simulations of Spo0F/Spo0B

Spo0B Spo0F

Native

distance (Å)

Ca–Ca distance

(Å), 6 Å

Ca–Ca distance

(Å), 6.5 Å

Ca–Ca distance

(Å), 7 Å

Ca–Ca distance

(Å), 7/11 Å

GLN 37 ILE 15 7.7 7.4 � 0.2 7.4 � 0.1 7.8 � 0.2 7.7 � 0.1

LEU 38 GLY 14 6.7 6.0 � 0.2 6.4 � 0.1 6.8 � 0.1 6.9 � 0.1

GLY 41 LEU 18 7.0 6.0 � 0.1 6.5 � 0.1 6.9 � 0.2 6.9 � 0.1

ASN 42 GLY 14 9.7 6.0 � 0.1 6.5 � 0.1 7.0 � 0.1 6.9 � 0.1

ASN 42 LEU 18 7.0 5.9 � 0.1 6.4 � 0.1 7.0 � 0.1 6.9 � 0.1

LEU 45 VAL 22 8.2 6.0 � 0.2 6.5 � 0.1 6.9 � 0.1 7.8 � 0.2

HIS 30 ASP 54 12.2 16.5 � 0.5 15.9 � 0.4 16.4 � 0.3 11.6 � 0.1

When varying the Ca–Ca distance of the DI contacts (first six rows) and the His-Asp pair (last row) in docking simulations, the deviations to the native distances are small
for all choices of parameters. Each number represents 10 docking simulations at T ¼ 1/3 with contact strengths for the DI predicted contacts of 5kT. The parameters in
the last column have an additional contact added between His30 and Asp54 of 10kT.
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responsible for the phosphoryl transfer cannot be detected by DCA due to
perfectly conserved amino acids (covariance needs variance). We therefore
test including an additional contact (see Fig. 3.6 and Table 3.1). To accom-
modate for the size of the phosphoryl, we add 4 Å to the contact distance,
close to the typical size of a phosphate group in empirical force fields. This
additional contact improves the quality of the prediction.
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Figure 3.6 Robustness of parameters for the Spo0F/Spo0B system. Ten docking
simulations using the DCA predicted interface contacts (full: contact strength 5kT
and 6 Å, striped: 5kT and 6.5 Å and thinly striped: 5kT and 7 Å) lead to comparably
good results. (A)We find successful docking simulations (all contacts are formed in the
docked conformation) for different temperatures with a RMSD difference to the crystal
around 3–3.5 Å Ca-RMSD. (B) The differences Dr of the six contact distances with the
crystal distance show comparable deviations (see also Table 3.1). While (A) suggests a
contact distance of 6 Å optimal, (B) suggests 7 Å to be a slightly better choice.
We arbitrarily choose 7 Å as default value for further simulations. (C, D) Due to the
perfect conservation of the His-Asp pair in the two proteins, DCA in principle cannot
detect them as an interactions (covariance requires variance). The prediction quality
improves when including this contact additionally. The strength is relative to the DCA-
contacts (5kT, 7 Å) and the distance 11 Å allows to accommodation of the phosphoryl
group (assumed to be roughly 4 Å large). It shows that this additional contact needs to
be strong enough (>7.5kT ) to compete with the DI contacts to improve the prediction
quality.
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For the docking simulations the temperature is kept constant by the
Berendsen algorithm (Berendsen et al., 1984) with a coupling constant of 1.
Each docking simulation runs 2.5 Mio time steps of 0.0025 using the
described center-of-mass force and subsequent 0.5 Mio time steps without
the center-of-mass force, running for a total of roughly 20 h on a typical
CPU (Spo0F/Spo0B system, 4164 atoms). Having tested various sets of
parameters (see Fig. 3.6 and Table 3.1), we suggest T ¼ 2/3 and a combi-
nation of a contact strength of 5kT with a contact distance of 7 Å for the
DCA-contacts and 15kT/11 Å for the His-Asp contact for simulations.
2.2. Relaxation in an empirical force field

It is possible to relax the docked complexes additionally in an empirical all-
atom force field for refinement. Here, we use AmberF99 (Wang et al., 2000)
(http://chemistry.csulb.edu/ffamber) with explicit Tip3p solvent and coun-
terions ( Jorgensen et al., 1983), a time step of 0.002 fs, and particle mesh
Eswalds electrostatics (Essmann et al., 1995). This refinement aims at
removing artifacts from different physical environments for the isolated
and docked proteins.

There are several pitfalls/common problems when starting such simula-
tions. First, the input pdb-file must be modified to accommodate the
possibility of charged amino acids. Here we treat all LYS as LYP, CYS as
CYN, and HIS as HID. Also, the start and end of each chain has to be
identified (e.g., ASP to CASP or NASP indicating it being on the C- or
N-terminal). For these changes, it might be necessary to add/remove some
atoms. This can be done manually or by using homology modeling software
(Eswar et al., 2008). After that, it is necessary to minimize the structure for
later simulations. We find it useful to first minimize the structure, then add
solvent molecules (commands: editconf, genbox), minimize again, add
counterions (genion), and minimize again. Afterward the simulation can
be started.

While we see some relaxation of the sidechains in this simulation, the
backbone shows only minor movements. The resulting structures are in
high agreement (RMSD � 3 Å excluding the mobile C-termini) with
highly similar contact maps to the complexed crystal structure (1f51) (see
Figs. 3.4 and 3.5) (Schug et al., 2009b).
3. Summary

We described the detailed MAGMA method that exemplified the
feasibility of integrating sequence-based genomic analysis with molecular
simulation to generate structural models of a signal transduction complex

http://chemistry.csulb.edu/ffamber
http://chemistry.csulb.edu/ffamber
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at a resolution matching experimental accuracy (Schug et al., 2009b). DCA
described in the previous chapter was shown to give sufficient information
to successfully dock the Spo0B/Spo0F system. The parameters for the
SBS simulations are robust toward slight variations without significant
changes of the resulting structure. This allows tuning and refining them
for new specific systems or questions. We are confident MAGMA will
successfully introduce other TCS or, more general, short-lived complex
structures ruled by transient interactions, and allow concurrent simulation
of the conformational and functional motions of the complex, such as
those during the autophosphorylation reaction or phosphoryl-transfer
reaction.
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