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Abstract

Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A
common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon
activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems
in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such
circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising
characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit’s response to input
signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the
increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect
that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular
cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These
phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity
and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction.
Examples from Escherichia coli’s two-component signaling systems support these predictions.
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Introduction

Biological organisms employ a variety of signaling networks to

respond to changes in environmental conditions. An interesting class

of examples is given by the two-component signaling (TCS) systems,

which are ubiquitous in bacteria and plants [1]. TCS systems

typically consist of two proteins: a sensor histidine kinase (HK) and a

response regulator (RR). The HK is a transmembrane protein that

auto-phosphorylates in response to a ‘‘signal’’. The phosphate group

of the HK is subsequently transferred to the RR, which in its

phosphorylated form usually acts as a transcription factor. As a result,

the RR activates its target genes only when the signal is present. TCS

systems are the predominant signaling motifs in bacteria; E. coli, for

instance, features about 30 TCS systems [1]. Interestingly, in about

half of the cases, the RR also activates its own expression. The

functions of this positive feedback are not well understood [2,3].

Fig. 1 illustrates the transcriptional circuit of TCS systems. It

consists of a transcription factor (the RR) that has to be modified

post-transcriptionally in order to regulate its target genes; in

addition, it may activate its own transcription. Gene networks of

this type do not only occur in TCS systems, but are in fact a

common motif in many organisms, including eubacteria, archaea,

eukaryotes, and viruses [2,4]. While in TCS systems the RR is

modified by phosphorylation, many other transcription factors

(TFs) are activated by other covalent modifications or by the

binding of a ligand. Here, we use mathematical models to study

the characteristics of such inducible auto-activation circuits.

Intuitively, the auto-activation and open-loop circuits each

possess their distinct advantages [2,5,6]. In the open-loop circuit,

the TF is expressed constitutively. As a result, the circuit can be

induced quickly, because the post-transcriptional processes that

activate the TF are rapid, typically occurring in seconds or less. In

contrast, the full induction of the auto-activation circuit involves

transcription and translation of the TF, which takes minutes [7].

On the other hand, in the open-loop circuit, the TF is produced

even if the signal is absent for a long time. The constitutive

presence of numerous TFs in high copy numbers could lead to

cross-talk or noise, for instance due to spontaneous phosphoryla-

tion. These problems are alleviated in the auto-activation circuit,

in which the TF level is reduced in the absence of the signal. In

addition, positive feedback is generally expected to increase the

sensitivity of the response. However, auto-activation can also lead

to bistability and hysteresis [8]. While in some circuits bistability

can perhaps be beneficial, in signaling circuits that are supposed to

provide a well-defined output to a given input level, bistability and

strong hysteresis should presumably be avoided. The significance

of each of these effects clearly depends on the parameters of the

circuits. Below, we examine the above effects using quantitative

models and determine which parameter range could combine the

benefits of auto-activation while minimizing its drawbacks.

Our results show several surprises. First of all, they demonstrate

that an inducible auto-activation circuit can generate an ultra-

sensitive threshold response, even if the activation mechanism is

non-cooperative. This is surprising, because in open-loop systems
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sensitivity is associated with molecular cooperativity, either

through the cooperative binding of TFs to multiple binding sites

at the promoter, or by cooperativity in the activation of TFs.

These new results emphasize that auto-activation is an excellent

tool for signaling circuits that require a threshold or switch-like

response. However, this benefit comes at a cost: stochastic models

reveal that the induction speed is strongly affected by auto-

activation–in fact, much more so than previously estimated based

on deterministic rate equations [2,3,7,9]. The discrepancy

between deterministic and stochastic models is most pronounced

when the basal transcription rate of the TF is low, in which case

rate equations dramatically underestimate the induction time.

Moreover, in this regime the induction time also becomes very

unpredictable. We show that these effects are expected to occur

under conditions that are fairly typical for bacterial circuits. These

novel findings demonstrate that the need for a rapid and reliable

induction severely constrains the use of auto-activation in response

circuits.

Below, we first introduce the model used in this study. Next, we

discuss results regarding bistability, sensitivity, and induction

speed. We finally combine these results to explore how these

characteristics may restrict the designs actually found in nature.

Models

We consider the inducible circuits illustrated in Fig. 1, consisting

of a TF that must be activated to function and possibly activates

the transcription of its own gene. To keep the analysis general, we

do not specify the nature of the modification, nor the

environmental signal triggering the TF’s activation. Instead, we

assume that in steady state, at a given signal level, a fraction r of

the TFs will be activated. Thus, r can be considered the input of

the circuit. If r~0, the signal is completely absent, while if r~1
the signal is saturating.

We use a simple, deterministic model to derive our first results

[10]. The dynamics of the TF concentration c are described by the

following ordinary differential equation:

dc

dt
~g(rc)(b=V ){bc: ð1Þ

Here b is the degradation rate constant of the TF; in growing cells,

b also accounts for dilution due to growth. The TF’s transcription

rate g(rc) is a function of the concentration of modified TFs,

ĉc:rc, because only the modified TFs can activate transcription.

We assume g(ĉc) has the following Hill-type form:

g(ĉc):a
(ĉc=K)Hz1=f

(ĉc=K)Hz1
: ð2Þ

Parameter K is the dissociation constant of the modified TF

binding to its operators, and H is the Hill coefficient. In this

notation, the basal transcription rate is g(0)~a=f , and the

maximal transcription rate at full activation is g(?)~a, showing

that f is the maximal fold change of the promoter. If f ~1, the

auto-regulation is eliminated and the model describes the open-

loop circuit. Lastly, we assume that each mRNA transcribed from

the promoter is instantly translated b times (the ‘‘burst size’’) [11].

This results in an increase in the TF concentration by an amount

b=V , where V is the volume of the cell. Note that for simplicity we

do not explicitly include the dynamics of the mRNAs and we

neglect time delays due to transcription, translation and protein

folding.

For a given input r, the dynamics of Eq. 1 define a steady state

TF concentration cs(r) that is at most cmax:(a=b)(b=V ). The

function cs(r) therefore describes the response of the total TF

concentration to the signal r. The expression level of genes

encoded in the same operon as the TF, such as tg2 in Fig. 1, is

expected to be proportional to cs(r), too.

Another important quantity is the steady state concentration of

modified TF, ĉcs~rcs. Because only the modified TF regulates the

target genes, we consider ĉcs to be the output of the circuit; we will

call ĉcs(r) the response function of the circuit. The shape of the

response function is determined only by parameters f and H (see

Supporting Text S1). We therefore focus on the role of these

parameters.

For our analysis of the induction speed, a stochastic version of

the above model is required; it will be introduced below, in the

section ‘‘Achieving rapid induction’’.

Figure 1. Open-loop vs. auto-regulation circuits. We consider
genetic circuits consisting of a transcription factor (TF) that can regulate
its target gene, gene tg, only if it is activated in response to some signal
(shown here as modification M). We compare two alternative designs. In
the first design, the open-loop circuit, the TF is constitutively expressed
from promoter Pc and regulates its target gene by binding to its
promoter, Ptg. In the second design, the auto-activation circuit, the TF
in addition activates its own expression, from promoter Pa. In this case,
additional genes in TF’s operon–such as gene tg2–also respond to the
signal. Both circuits are ubiquitous in nature.
doi:10.1371/journal.pcbi.1002265.g001

Author Summary

Different times call for different measures. Therefore, cells
adjust their protein levels depending on their environ-
ment. Upon the detection of certain environmental signals,
transcription factors are activated, which activate or inhibit
the production of specific sets of proteins. As it turns out,
these transcription factors often also stimulate their own
production. Indeed, such self-regulation is a common
motif in signal–response systems of many organisms,
including bacteria, animals, plants and viruses–but its
function is not well understood. We have used mathe-
matical models to study its benefits and drawbacks. On the
one hand, calculations show that self-regulation can be a
very useful tool if the cell needs to respond in a sensitive
way to changes in its environment, or if it is supposed to
respond only if the signal exceeds a threshold level. On the
other hand, these benefits come at a cost: self-regulation
severely slows down the cell’s response to changes in the
environment. We have analyzed how the cell can benefit
from the advantages of self-regulation, while mitigating
the drawbacks. This leads to strict design constraints that
examples from the bacterium E. coli indeed seem to obey.

Auto-activating Signaling Circuits
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Results

Avoiding bistability and hysteresis
It is well known that auto-activation can lead to bistability

[4,12–15]. When an auto-activating circuit is bistable, it has two

stable steady states: one in which the TF concentration is high and

stays high because the TF activates the transcription of its own

gene, and one in which the TF concentration is low and stays low

because the TF’s gene is not activated.

Fig. 2 summarizes which parameter values yield bistability in

our model. As long as the fold change f and the Hill coefficient H
of auto-activation are low, bistability cannot occur (regime I in the

diagram). More precisely, bistability does not occur as long as (see

Supporting Text S1)

HvHc(f ):

ffiffiffi
f

p
z1
ffiffiffi
f

p
{1

: ð3Þ

(Hc(f ) is the solid, blue line in Fig. 2.) In this regime, for any input

r, the circuit has a unique steady-state TF level cs (see the insets in

Fig. 2). When H exceeds the critical value Hc(f ), bistability sets in,

but only for an intermediate range of r values. For high values of f
and H, this regime extends all the way up to r~1 (regime III, to

the right of the dotted line). In this regime, the circuit is still

bistable even when the signal is saturating.

Regime III seems inappropriate for a signaling circuit. Even at

saturating signal levels (r~1), the circuit will not be induced,

because the low-expression state remains stable. (In stochastic

models the system will eventually turn on by a random fluctuation,

but the induction will be very slow, as demonstrated below.) In

regime II the circuit is bistable for a range of r values. There, the

output is not uniquely determined by the input, because two

output levels are compatible with a given r. This behavior leads to

hysteresis [16]. Bistability and hysteresis can presumably be

beneficial in some systems [2], in particular if the circuit has to be

cautious in turning on or off, or in the context of bet hedging [17].

However, in signaling systems, assuming that there is an optimal

expression level for any given signal level, bistability and hysteresis

will tend to trap the circuits in a non-optimal state. We argue

therefore that a bistable response is often not desired. Based on

these considerations, we expect that the circuit parameters should

usually be in regime I (also see the discussion in Ref. [18]).

Achieving sensitivity
An advantage of positive feedback is that it can increase the

sensitivity of a circuit [5,6]. In the context of dose-response curves,

a high sensitivity can be beneficial. In particular, highly sensitive

signaling circuits allow the cell to ignore low-level signals, below a

certain threshold value, which may be due to noise or cross-talk.

We here quantify how much the sensitivity of signal-response

circuits can benefit from auto-activation.

The sensitivity of response curves can be defined in various ways

[19]. A common approach is to define the sensitivity of a response

function y(x) as the maximum slope of that function in a log–log plot,

that is, as sd½y(x)�:maxx[Rz (d log y=d log x). This definition has

many desirable properties: a high sd indeed indicates that y(x)
increases rapidly in some domain, the measure is invariant under

scaling (sd½vy(wx)�~sd½y(x)�), and convenient for mathematical

analysis. For those reasons, we will use this measure below. However,

a pitfall is that, in order for y(x) to be deemed sensitive, a high log–log

slope in a single point is sufficient. As a result, a high sd does not

guarantee that the circuit behavior resembles a binary switch [19].

Therefore, we also report results for the measure sD½y(x)�, defined as

the average slope of y(x) in a log–log plot, calculated over the domain

in which it switches from low to high. (In other words:

sD½y(x)�~D log y=D log x in the switching domain.) The switching

domain is defined heuristically as the domain in which y(x){y(0)
increases from 10% to 90% of its maximum value.

Ultimately, the most relevant quantity is the sensitivity with

which the expression of the target genes responds to changes in the

signal level. This sensitivity is shaped by each step in the response

network: the detection of the signal, the signal transduction, the

modification of the TF, and the promoters of the target genes.

Consequently, a sensitive response can be implemented at

different places in the response network. Here we study the

sensitivity that is contributed by the auto-activation circuit and

therefore focus on the sensitivity of ĉcs(r).

That auto-activation can strongly improve the sensitivity can be

understood by revisiting Fig. 2. If the parameters are chosen near

the border between regions I and II, the response is almost bistable,

leading to a high log–log slope (see inset in Fig. 2). Indeed, for the

model in Eq. 1 and 2, sd can be calculated exactly (see derivation

in Supporting Text S1):

sd~
Hc(f )

Hc(f ){H
: (auto{activation) ð4Þ

(Hc(f ) was defined in Eq. 3.) This confirms that the maximal log–

log derivative diverges when H approaches the critical value

Hc(f ). We conclude that an arbitrarily high sd can be obtained for

any Hill coefficient by properly choosing the fold change, and vice

versa.

In particular, if the auto-activation is non-cooperative (H~1),

Eq. 4 reduces to

sd~

ffiffiffi
f

p
z1

2
, (non{cooperative auto{activation) ð5Þ

proving that, even in the absence of molecular cooperativity, sd

increases without bound when f is increased. Indeed, in the limit

Figure 2. Phase diagram showing which parameter values lead
to bistability. When the fold change and the Hill coefficient are both
low (regime I), the response of the TF concentration is not bistable (see
inset). Above the blue, solid line, however, bistability sets in for a range
of input values r. Above the dotted line (regime III), the bistability
remains even when the signal is saturated (i.e., if r~1). Response
circuits for which bistability and hysteresis are not desired, are restricted
to the shaded parameter regime. (The blue line does not depend on
other parameters; the dotted line depends on the ratio K=cmax, here
chosen to be 0:25.)
doi:10.1371/journal.pcbi.1002265.g002

Auto-activating Signaling Circuits
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of large f a strict threshold response is obtained. We illustrate this

in Fig. 3A and B. Assuming f is large, the expression of the TF,

cs(r), is fully inhibited when r is below the threshold rt; for rwrt it

takes the form of a translated (shifted) Michaelis–Menten curve

(Fig. 3A). In the same limit of high f , the concentration of

activated TF ĉcs(r) is threshold-linear (Fig. 3B). (Mathematical

derivations are provided in the Supplementary Text S1.)

Fig. 3C graphically explains the origin of this behavior. It plots

the rate of production of TFs, g(rc)(b=V ), as a function of the TF

concentration, for four signal levels; the degradation rate bc is

shown too. The steady state value of c is the value at which

production and degradation balance, i.e., where the production

and degradation lines cross (indicated with dots). If r is large, the

steady state level is large. But if r is reduced enough, the

production line shifts below the degradation line and the steady

state becomes cs~0. The threshold value is rt~K=cmax and can

be varied biochemically by tuning K .

To illustrate how remarkable the values of sd are that can be

achieved using auto-activation, we reexamine the open-loop case

(see Fig. 1). The open-loop circuit itself is insensitive (sd~1), but

this can be compensated by choosing a sensitive promoter for the

target genes [20]. This requires that the TF binds cooperatively to

multiple binding sites on the target promoters. If the TF binds fully

cooperatively to ĤH binding sites and achieves a fold change f̂f
(again assuming the Hill form of Eq. 2), the expression of the target

gene responds with the following sensitivity to changes in r:

sd~
ĤH

Hc(f̂f )
: (Hill functions) ð6Þ

(We provide a derivation in Supplementary Text S1.) Because

Hc(f )w1, this shows that in open-loop circuits the sensitivity sd at

best equals the number of cooperative binding sites at the promoter.

However, this maximal sd is obtained only if the fold change is large,

so that Hc(f̂f )&1. The following numerical example illustrates this

point. If the fold change in the non-cooperative auto-activation circuit

is f ~100, the resulting sd is 5.5. To obtain the same value in the

open-loop circuit, at f̂f ~100, more than 7 cooperative TF binding

sites are required at the target promoter. Clearly, if a threshold

response is desired, auto-activation can be an excellent tool.

We repeat, however, that even though sd for the non-

cooperative auto-activation circuit diverges in the limit of large

f , the response function does not converge to a step function (as

Hill functions do in the limit of high sd), but to the threshold-linear

response in Fig. 3B. While this is obviously an excellent threshold

response, its quality as a switch is better represented by the

measure sD. Unlike sd, sD does not diverge in the large-f limit, but

it nevertheless acquires large values. For instance, in the example

above (H~1, f ~100, and rt~0:5), we find sD~3:3. For

comparison, for Hill functions,

sD~W (f̂f )|
ĤH

2
, (Hill functions) ð7Þ

where W (f̂f ) converges to 1 from below as the fold change f̂f

increases (see derivation in Supplementary Text S1). From this it

follows that, to obtain the value sD~3:3 in the open-loop circuit

(again assuming f̂f ~100), the promoter of the target gene should

have a Hill coefficient ĤH~7:0 . This shows that non-cooperative

auto-activation circuits can constitute an excellent switch.

Fig. 3D summarizes the regions of parameter space that lead to

a high sensitivity. The figure is based on Eq. 4 for sd. The line Hc(f )
where sd diverges is shown–the same line that marks the boundary

between mono- and bistable regimes in Fig. 2. If the circuit is to be

sensitive, the parameters have to be close to that line, within the

shaded region (where we chose a somewhat arbitrary cutoff sd~2).

An analogous figure based on sD is presented in the Supplementary

Text S1 and leads to very similar conclusions.

Achieving rapid induction
Another important characteristic of a signaling circuit is its

induction speed. A circuit that can be induced rapidly in a

changing environment is expected to have a fitness advantage

[7,9]. We therefore study the induction time of the circuit.

As we explain below, the deterministic model is not adequate to

describe the induction time of the circuit. We therefore introduce a

stochastic model. This model is based on the following Master

equation, describing the evolution of the probability distribution

p(n,t) for the TF copy number n at time t:

dp(n,t)

dt
~g(r(n{b)=V )p(n{b,t)z

b(nz1)p(nz1,t){ g(rn=V)zbn½ �p(n,t):

ð8Þ

Figure 3. Auto-activation, even if non-cooperative, can strongly increase the sensitivity of the circuit. Fig. A: TF concentration cs as a
function of r, for the non-cooperative auto-activation circuit (H~1). For large values of the fold-change f the plot becomes a highly effective
threshold response, with threshold r~K=cmax, here set to 0.25. Fig. B: Same as Fig. A, but now showing the response of the active species, ĉcs(r),
which at large f becomes threshold-linear. Fig. C: Graphical explanation of the threshold response at large f . Plotted are both the degradation and
the production rate of the TF, as a function of the TF concentration c (see Eq. 1). The intersections between these curves (indicated with dots) indicate
the steady state level cs . When r is high, the steady state expression level of c is high. However, when r is reduced below K=cmax the expression is
fully turned off. Fig. D: Phase diagram of the sensitivity, defined as the maximum slope in a log–log plot sd (similar results are obtained using an
alternative definition sD; see Supplementary Text S1). Above the solid, blue line the system is bistable (see Fig. 1); on this line sd diverges. To obtain a
high sensitivity, one therefore has to choose the parameters close to this line, in the shaded region (we use the arbitrary cutoff sd~2).
doi:10.1371/journal.pcbi.1002265.g003
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All parameters are analogous to the deterministic model. As in the

deterministic case, the mRNA level is not included explicitly but

TFs are produced in bursts of size b. We do not model the binding

and unbinding of the TF to the DNA explicitly, but assume that

the binding kinetics of the TF at the promoter are fast compared to

the time scale of transcription initiation [21]. These assumptions

simplify the analysis but are not critical: similar results can be

obtained with other models previously presented in the literature

[21–27].

To introduce the induction time, we imagine that the signal has

been absent (r~0) for a period long enough to ensure that the

circuit is in steady state. Then, at time t~0, the signal is

introduced at a saturating level (r~1). We then define the

induction time as the waiting time before the expression of the TF

arrives at 50% of its steady state level. In the deterministic model,

this can be calculated by solving the differential equation 1. In the

stochastic model, the waiting time is actually a random variable;

therefore, we report the mean waiting time, which can be calculated

exactly from the Master equation 8. In the Supporting Text S1 we

describe the method used; there we also discuss the full induction

time probability distributions.

Fig. 4A shows results from both the deterministic and the

stochastic model. Plotted is the induction time as a function of the

fold change. We assume that the maximal expression level of the

circuit is prescribed by the functional context of the circuit;

therefore, we vary f but keep a fixed. The deterministic model

predicts that the induction time increases mildly–less than two-

fold–as f is increased from 10 to 1000. Based on such results, one

might conclude that the effect of auto-activation on the induction

time is mild. The stochastic model, however, reveals a different

picture. When f is low, both models are in agreement. But when

f wa=b (as we explain below), the stochastic model deviates

dramatically from the trend predicted by the deterministic theory,

demonstrating that the induction time is much more strongly

affected by the auto-activation than expected from deterministic

rate equations [2,3,7,9].

What causes the discrepancy between the deterministic model

and its stochastic counterpart? When the fold change is increased

while the maximal transcription rate a is kept fixed, the basal

transcription rate a=f is reduced. As a result, the expected number

of TFs present in the cell at time t~0–just before the signal

arrives–becomes small. This means that, when the signal is

introduced, the TF concentration is initially too low to activate the

TF’s transcription significantly, so that the transcription rate

remains of the order a=f . Crucially, this means that the expected

waiting time before the first transcription event occurs is close to

f =a. Using realistic parameters for bacteria, in which the maximal

transcription rate a is of the order 0:1 to 1 min{1, this waiting

time can easily become large. Indeed, Fig. 4A shows that for large

f the induction time is of order f =a, indicating that the first

transcription events become the limiting step of the induction.

This effect is not accounted for by the deterministic model, which

disregards the discreteness of the molecular events.

To visualize the process, Fig. 4B shows five representative time

traces of the induction, obtained by kinetic Monte Carlo

simulations, for a circuit with a large fold change f ~150. Before

the signal is switched on, the copy number fluctuates around the

average value ba=(bf )&2. The signal is introduced at time t~0.

The traces clearly show that the induction time is dominated by

the waiting time before the first transcription event; next, the

circuit usually switches on rapidly. This has another important

consequence: because transcription is (modeled as) a Poisson

process, the probability distribution of induction times is

approximately exponential (see Supplementary Text S1). The

standard deviation of the induction times is therefore as large as

the mean. This means that, in this parameter regime, the

induction process is not only slow, but also unpredictable.

The anomalous induction time ultimately results from a low

basal transcription rate a=f . However, assuming that the maximal

expression level of the TF is set by its biological function, so that a
can be considered given, this directly leads to constraints on f .

Fig. 4C is a contour plot of the induction time according to the

stochastic model. It clearly shows that large fold changes lead to

long induction times. Also, unless the fold change is small,

increasing the Hill coefficient strongly slows down induction;

comparison to Fig. 2 shows that this is because the circuit then

approaches and eventually enters the (deterministically) bistable

regime. If we arbitrarily decide that the induction time should not

exceed 50 min, the admissible values of f and H are limited to the

small shaded region.

Relation between slow induction and bimodality
To be precise, we distinguish between bistability and bimodal-

ity. We call a circuit bistable if the deterministic model predicts

two stable steady states, and bimodal if the stochastic model

predicts a steady state probability distribution with two peaks.

Naively, one might expect that, in order for a circuit to be

bimodal, it should be bistable. Theoretical work has shown,

Figure 4. Auto-activation strongly affects the time required for induction. Fig. A: The induction time (defined in the main text) as a function
of fold change f , for the case H~1 (no cooperativity). In the deterministic model, the induction time depends only mildly on f . However, at large f
the stochastic model deviates strongly from the deterministic one and predicts a dramatic slowdown. The slowdown sets in when the steady state
distribution becomes bimodal, that is, when f wa=b; then, the induction becomes limited by the first transcription events, occurring at approximately
the basal rate a=f . Fig. B: Typical time traces for the induction process, obtained by kinetic Monte Carlo simulations, at f ~150. The waiting time for
the first transcription event (indicated with arrows) is indeed rate-limiting. Fig. C: Contour plot of the induction time in the stochastic model (in
minutes). At f ~1 the auto-activation is removed and the induction is instantaneous. If we arbitrarily require that the response time is at most
50 minutes, only the shaded region is adequate. Parameters: a~1 min{1, b~0:04 min{1 , b~10, K~50=V .
doi:10.1371/journal.pcbi.1002265.g004
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however, that this correspondence does not always hold

[24,26,28,29]. In particular, stochastic models of auto-activation

circuits can produce bimodality even if the auto-regulation is non-

cooperative (H~1), in which case the circuit cannot be bistable

(see Fig. 2) [24,26]. Recently, this theoretical result was verified

experimentally using a synthetic auto-activation circuit in

Saccharomyces cerevisiae [27]. As we will explain, this phenomenon

is directly related to the slow induction time we just described.

We explained that the slow induction was due to the fact that, if

the circuit is prepared in a state with no TFs (n~0), it on average

lingers in that state for a time f =a, which becomes large if f is

large. Obviously, the same lingering time holds if the circuit arrives

in a state with n~0 by a rare random fluctuation. Therefore, as f
is increased, the stochastic circuit will spend an increasing fraction

of its time in the n~0 state, which for large enough f results in a

peak in the steady-state distribution at n~0. (In fact, in the limit

f?? the state n~0 becomes an absorbing state, so that the

steady-state probability distribution becomes concentrated entirely

on n~0.) If another peak is present at non-zero expression levels, a

bimodal distribution results. In other words, the anomalous

bimodality and the slow induction are different manifestations of

the same underlying characteristics of the circuit.

It can readily be derived from the Master equation 8 that the

bimodality for non-cooperative auto-activating circuits requires

that f wa=b (see Supporting Text S1). In other words, in the non-

cooperative circuit, bimodality is obtained only if the basal

transcription rate a=f is smaller than the protein degradation/

dilution rate b. This holds independent of H , K or b; moreover,

more detailed stochastic models yield the same result (see

supplementary text of Ref. [27]). Given the relation between the

anomalous induction time and bimodality, this explains why the

induction time of the stochastic model deviates noticeably from the

deterministic one when f > a/b, as we indeed observed in Fig. 4A.

The above interpretation also indicates that a large burst size b
is not required to obtain bimodality at H~1 [27]. Bimodality can

occur at any burst size, provided the fold change is large enough,

such that f wa=b (or, equivalently, provided the basal expression

level is low enough such that a=f vb). Yet, the burst size can be

important in an indirect way: to maintain a fixed steady state

expression level, an increased burst size has to be compensated by

a decreased a or an increased b. In both cases the requirement

f wa=b is relaxed.

In models that explicitly treat the binding of the TF to its own

promoter, bimodality can also occur due to a different mechanism

[21,25]. If the binding kinetics of the TF are slow, the steady state

distribution can have two peaks: one corresponding to the

expression when a TF is bound to the promoter, and one

corresponding to the expression when the promoter is unbound.

For this type of bimodality the duality with an anomalous

induction does not necessarily hold.

Synthesis
We have assumed that signaling circuits generally care about

speed and sensitivity, and should avoid bistability and hysteresis.

Each of these properties imposes constraints on the auto-

regulation by the TF, as shown in the phase diagrams Figs. 2,

3D and 4C. In Fig. 5 we combine these results to analyze which

parameters are compatible with all these constraints. To eliminate

bistability, the operating point of the circuit should be below the

black solid line. To obtain sensitivity, it should be close to this line.

To avoid a slow induction, the fold change should not be too large;

yet, to have any benefit from the auto-activation, it should not be

too small. These constraints restrict the system to the small

parameter region indicated in the plot. In this region, the fold

change is at most moderate (= 40), and the Hill coefficient is

roughly in the range 1 to 2. Such a low Hill coefficient can be

achieved using auto-regulation by a single TF dimer.

Discussion

We analyzed the properties of inducible auto-activation circuits

to find parameter regions that are compatible with the

requirements of signalling systems. For that reason, we studied

bistability, sensitivity and induction speed, and discovered several

new phenomena.

First of all, we found that auto-activation circuits can create an

ultra-sensitive threshold response, even in the absence of

molecular cooperativity. This conclusion holds for both definitions

of sensitivity that we studied. To achieve similar levels of sensitivity

in open-loop circuits, the promoters of all target genes have to be

very sensitive, requiring many cooperative TF binding sites. As this

is not feasible for every TF, positive feedback seems an excellent

way to greatly increase the sensitivity of the response of all target

promoters through the construction of a single binding site.

However, auto-regulation comes at a cost. We demonstrated

that the induction time is much more severely affected by auto-

activation than previously appreciated. When the basal transcrip-

tion rate of the TFs promoter is small, ordinary rate equations fail

and stochastic models should be used. In this regime, the waiting

time until the first transcription event takes place becomes rate

limiting, which makes the induction both slow and unpredictable.

This effect imposes strong constraints on the use of auto-regulation

for signaling. As a rule of thumb, the basal transcription rate a=f
should be such that the average waiting time for the first

transcription event, T&f =a, is safely below the required induction

time. To indicate the severity of this limitation we note that if

f ~50 and a~0:5=min, the response time will be more than

T~100 min. We therefore expect that this new stochastic effect

will be relevant under fairly typical bacterial conditions.

Together, the constraints imposed by speed, sensitivity and

bistability restrict the parameters to the small shaded area

delineated in Fig. 5. Of course, the exact position of the borders

of this area depend on somewhat arbitrary choices. If a narrow

Figure 5. Summary of results. Only in the shaded area is the circuit
mono-stable, sensitive (sdw2), reasonably fast (induction time
v50 min), with a non-negligible fold-change (f w6). Of course, the
precise borders of the area depend on the stringency of the circuit’s
functional requirements. Based on these results, inducible auto-
activation circuits should have an at most moderate fold change; also,
a modest Hill coefficient between 1 and 2 is sufficient. This can be
achieved by auto-activation mediated by a single TF dimer.
doi:10.1371/journal.pcbi.1002265.g005
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domain of bistability can be tolerated, somewhat higher Hill

coefficients can be admitted. The induction time required in real

circuits presumably varies, and therefore the restrictions on the

fold change will vary too. Nevertheless, Fig. 5 clearly illustrates the

trade-offs that may shape the parameters of response circuits.

For simplicity, we have discussed the sensitivity and the

bistability of the circuit in terms of the deterministic model.

However, similar results can be obtained in the framework of the

stochastic model. In the Supporting Text S1, we demonstrate that

the threshold response obtained in the deterministic model is

preserved in the stochastic one. There, we also show that the

bistable region of parameter space is virtually identical to the

region that produces bimodality in the stochastic model–that is,

apart from the anomalous bimodality at f wa=b that we discussed

above. (How the stability of the deterministic steady states is

affected by noise has been discussed in detail in Ref. [10].)

With these ideas in mind, we revisit the TCS systems of E. coli,

which we discussed briefly in the introduction. In order to model

any specific TCS system quantitatively, the general models that we

presented have to be extended to include the complex details of

the signal transduction and the expression of the sensor kinase

[3,18,30]. Nevertheless, the constraints that we derived should also

affect TCS systems. To our knowledge, the E. coli genome contains

26 RRs, 14 of which are believed to auto-regulate. Table 1 lists

these auto-regulating RRs. From this table, it is clear that a

significant fraction of RRs activate their own expression level.

Table 1 also mentions the number of binding sites found for the

RR at its own promoter. Indeed, it appears that, in the well-

studied cases, the auto-activation is typically mediated by a single

(usually dimeric) binding site; examples include BaeR, CusR,

PhoB, PhoP and ZraR. This is compatible with our predictions,

because a dimeric binding site should yield a Hill coefficient

between 1 and 2, depending on the dimerization kinetics. Note

that the RRs that inhibit their own expression have more binding

sites.

Our other prediction is that the maximal fold-change of the

auto-activating signaling circuits should not be high. Unfortunate-

ly, the fold changes of most TCS systems are not accurately

known. One problem is that the native signals of many TCS

systems are unknown. In addition, auto-activation may only be

observed at a high signal level [30]. Also, if the introduction of the

signal affects bacterial growth, global physiological effects have to

be accounted for [31]. A subtle point is that the fold change f ,

defined in terms of the regulatory function g(ĉc), is generally not

equal to the relative change in the steady state expression levels at

r~0 and r~1, because even at r~1 the circuit generally does not

operate at the maximal transcription level a. We can therefore

provide only rough estimates. For PhoP a modest 10-fold increase

in expression is reported between stimulated and unstimulated

conditions [32]. Between phosphate-rich and phosphate-poor

conditions, PhoB changes 12-fold according to Ref. [33], and 40-

fold according to Ref. [34]. BaeR regulates its own operon,

mdtABCD-baeSR, but the effect of BaeR amplification on baeS is

only 10-fold [35,36]; in addition, the putative inducer indole

increases BaeR expression only 1.6 fold [36]. ZraR expression

increases ‘‘significantly’’ in the presence of 1mM ZnCl2, but a

quantitative measurement of the fold change is, to our knowledge,

not available [37]. In all these cases the basal expression is non-

negligible and the fold change seems to be low to moderate, as

expected from our analysis.

Few experiments have directly measured the induction time of

signaling systems. An exception is the PhoP/PhoQ two-compo-

nent system of Salmonella [38–40]. The PhoP response regulator

auto-activates by binding to a single dimeric binding site. After

induction, the mRNA level of PhoP needs &20min to reach its

maximum value, which is about 20–30-fold higher than its basal

level (depending on the signal); however, it takes about 30–40 min

for the concentration of the protein PhoP to reach 50% of its

maximum value [40]. These numbers agree well with our

prediction in Fig. 5.

Induction times have also been measured for an entirely

different class of auto-activating circuits: the type II restriction-

modification (R-M) systems. R-M systems function as a defense

against bacteriophages and are pervasive in bacteria; several

thousands of putative R-M systems have been found [41]. These

plasmid-borne systems consist of a restriction endonuclease

(REase) that specifically cleaves DNA, and a methyltransferase

(MTase) that methylates the same sequence and thereby protects it

against the REase. Some R-M systems contain a third gene, called

the C gene, which codes for a TF. C is co-transcribed with the

REase, and in many examples regulates its own expression. For

example, in the PvuII system, C binds to two dimeric binding sites,

OL and OR, from which it respectively activates and represses its

own expression [42–44]. The repressor site is much weaker than

the activator site; it becomes relevant only at high C concentra-

tions [44]. The auto-activation is believed to be important for the

horizontal transfer of the plasmid between bacteria [42,45]. Upon

entering a cell, it is crucial that the MTase is expressed before the

REase, to prevent the REase from damaging the new host’s DNA.

Indeed, auto-activation by C can provide such a delay.

Experiments show that the induction of the C and REase proteins

Table 1. Auto-regulating response regulators in E. coli.

Name Sign Evidence Nr. binding sites Source

ArcA z * ? [47]

DpiA z ** ? [48]

BaeR z ** 1 [35]

CusR z ** 1 [49]

EvgA z * 1 [50,51]

KdpE z * 1 [52]

PhoB z ** 1 [34]

PhoP z ** 1 [32]

ZraR z ** 1 [37]

CpxR z ** 1–2 [53,54]

QseB z ** 2 [55]

GlnG/NtrC z/{ ** 6 [56]

NarL z/{ * 9 [57]

TorR { ** 4 [58]

About half of the response regulators (RRs) in E. coli are known to auto-regulate;
these are included in the table. (RRs that are not known to auto-regulate are:
Atoc, BasR, CreB, DcuR, GlrR, NarP, OmpR, RcsB, RstA, UhpA, UvrY, YedW.) The
second column of the table indicates the sign of the auto-regulation: + for
activation, 2 for repression, +/2 for both. Note, however, that not all TCS
systems are well characterized. When the auto-regulation is inferred from
expression studies only, so that indirect regulation is not obviously excluded,
the column ‘‘evidence’’ contains a single star (*). If the RR has been shown to
bind physically to its cis-regulatory region (by gel retardation studies with
purified proteins or by footprinting essays), two stars are assigned. The column
‘‘nr. binding sites’’ specifies the number of binding sites found for the RR at its
own promoter. Again, these data ought to be interpreted with care because, for
instance, a single binding site for a RR acting as a tetramer can be hard to
distinguish from two binding sites of a RR acting as a dimer. The table shows
that, for RRs, auto-activation is more common than auto-repression, and that it
is typically mediated by 1 or 2 binding sites.
doi:10.1371/journal.pcbi.1002265.t001

Auto-activating Signaling Circuits

PLoS Computational Biology | www.ploscompbiol.org 7 November 2011 | Volume 7 | Issue 11 | e1002265



after entering the cell takes about 30 min [43]–a modest 10 min

longer than the constitutively expressed MTase–and that the fold-

change of auto-activation is > 25 [43]. Despite the fact that a

short delay is actually beneficial in this system, these numbers are

compatible with the predictions in Fig. 5. The basal expression

that is required to control the delay is provided by a separate,

constitutive promoter [45], which suggest that natural selection

has favored a short and predictable delay.

How can a cell reduce the induction time of an auto-activation

circuit? Obviously, for a fixed fold change, the induction time can

be decreased by using a high maximum transcription rate a.

However, this would also result in a high expression level at full

activation. Using typical numbers for E. coli: at a burst size b&5
and a degradation/dilution rate of b&1=(60 min), a high

transcription rate a&10=min would lead to a steady state TF

copy number of &3000, which is exceptionally high for a TF. To

compensate, a low burst size (weak ribosomal binding site) could

be used, and/or active degradation of the TF. Another option is to

cap the maximal expression level by implementing auto-repression

at high TF concentrations, on top of auto-activation at lower TF

levels [46] (as is often found in type II restriction-modification

systems, discussed above [42]). However, because auto-repression

reduces the steady state expression at full induction, it also limits

the effective fold-change achieved. Each of the above measures

obviously introduces additional overhead, the cost of which should

be weighted against a higher basal transcription level or a slower

induction.

Finally, our analysis provides several testable predictions. In

particular, the strong dependence of the induction time on the

basal expression level could be tested experimentally in modified

versions of the PvuII circuit, or in a synthetic system, similar to the

one presented in Ref. [27]. One way to vary the basal expression

level of a synthetic auto-activation circuit is to express the TF from

two independent promoters, one of which can be controlled. By

tuning the expression from this promoter, its impact on the

induction time can be studied. We hope that our analysis inspires

such experiments to characterize the importance of stochasticity in

constraining the design of signaling circuits.

Supporting Information

Text S1 Methods, derivations and added analyses. This

document provides (i) detailed derivations of the mathematical

results used in the main text, (ii) a description of the methods used

to calculate mean induction times, and (iii) a discussion of the full

induction time distributions. (Includes 6 figures.)

(PDF)
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