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Abstract. A “semi-probabilistic” alignment algorithm which combines ideas from
Smith-Waterman and probabilistic alignment is proposed and studied in detail. It is
predicted that the score statistics of this “hybrid” algorithm is of the universal Gumbel
form, with the key Gumbel parameter A taking on a fized asymptotic value for a wide
variety of scoring parameters. We have also characterized the “extremal ensemble” | i.e.,
the collection of sequence pairs exhibiting similarities that a given scoring system is
most sensitive to. Based on this extremal ensemble, a simple recipe for the computation
of the “relative entropy”, and from it the correction to A due to finite sequence length
is also given. This allows us to assign p-values to the alignment results for arbitrary
scoring parameters and gap costs. The predictions compare well with direct numerical
simulations for a broad range of sequence lengths with various choices of the substitu-
tion scores and affine gap parameters.
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1 Introduction

Computer-assisted sequence comparison tools such as BLAST (Altschul et al.,
1990) and FASTA (Pearson, 1988) have become an integral part of modern
molecular biology. They reveal evolutionary relationships between protein se-
quences and therefore provide a basis for the functional identification of new
genes and for the construction of phylogenic trees. Two types of algorithms have
been used: those which search for the optimal alignment (as exemplified by the
algorithm of Smith and Waterman (1981)), and those which identify likely align-
ments (as exemplified by the hidden-Markov model (HMM) based “Sequence
Alignment Modules” (Hughey & Krogh, 1996)). In each case, the quality of the
alignment is summarized by an alignment score S; the latter is typically taken to
be the logarithm of the total likelihood in the probabilistic approaches. However,
such an alignment score is assigned to any pair of sequences, also to biologically
completely unrelated ones (e.g., to pairs of random sequences.) In order to be
able to distinguish true evolutionary relationships from random similarities it
is an important goal common to all algorithms to understand the probability
distribution function pdf(S) of the score S for the appropriate null models. The
knowledge of this distribution gives the possibility of assigning p-values, i.e., the
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probabilities that a high score could have arisen by chance, to alignment results.
These p-values quantify the amount of surprise behind a given alignment score.
Only if a score is sufficiently surprising, the underlying alignment is considered
to be of evolutionary origin.

Rigorous results on such background statistics are known only for the gapless
alignment, whose score distribution follows the so-called Gumbel form (Gumbel,
1958),

pdf(S) = KMNXexp [-\S — KMNe ™3], (1)

for long sequence lengths M and N (Arratia et al., 1988; Karlin & Altschul,
1990, 1993; Karlin & Dembo, 1992). Explicit formulae relating the hundreds
of alignment parameters to the two Gumbel parameters A and K are available
(Karlin & Altschul, 1990). For gapped sequence alignment with large enough gap
cost, the score distribution is also empirically known to obey Gumbel statistics
(Smith et al., 1985; Collins et al., 1988; Mott, 1992; Waterman & Vingron, 1994a,
1994b; Altschul & Gish, 1996, Olsen et al., 1999). However, the dependence of
the two Gumbel parameters on the hundreds of scoring parameters is generally
so complicated that it is very difficult to determine the Gumbel parameters in
an efficient enough manner to render them useful.

This problem is partially overcome in (gapped) BLAST by pre-computing
the null statistics for a fixed set of scoring parameters. However, this is a severe
restriction on the flexibility of the method and leads, e.g., to wrong predictions
of p-values for query sequences with unusual amino acid compositions. Even
more importantly, the restriction to a small set of scoring parameters for which
the null statistics is pre-computed becomes prohibitive for the use of position-
specific scoring functions (Henikoff & Henikoff, 1994) as they are needed for
detailed modeling of protein families, folds, etc. Because of this problem the
iterative similarity search algorithm PSI-BLAST (Altschul et al., 1997) is cur-
rently limited to uniform gap costs which is an unfortunate drawback.

Position-specific scoring systems are naturally incorporated in probabilistic
(e.g., the HMM-based) alignment algorithms. However, only very little is known
about the statistics of the log-likelihood score, even at the empirical level.

In this paper, we describe a “semi-probabilistic” alignment algorithm which
is a hybrid of the Smith-Waterman and the probabilistic alignment algorithms.
Our hybrid algorithm has the same computational complexity as the Smith-
Waterman and the probabilistic algorithms, with computation time scaling as
O(M - N); also, its sensitivity in detecting sequence homology is comparable
to or better than the existing algorithms (Yu & Hwa, 1999). The key advan-
tage of the hybrid algorithm is that its score statistics can be characterized
theoretically. Moreover, the ensemble of rare sequence pairs responsible for the
high-scoring events can be characterized. This “extremal ensemble” consists of
sequence pairs exhibiting similarities that a given scoring system is most sen-
sitive to. The knowledge of the connection between scoring systems and their
extremal ensembles is very useful in constructing the optimal scoring parameters
for a given model of sequence evolution. This is analogous to how the Karlin-
Altschul theory of gapless alignment can be used to guide the selection of the
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appropriate amino-acid substitution score (Karlin & Altschul, 1990). In the fol-
lowing sections, we will first describe the algorithm followed by characterization
of score distribution and extremal ensemble. A numerical test of the prediction
of the theory will be presented at the end. More technical issues are relegated
to the appendices.

2 Algorithms

Consider two sequences a = [ay, G2, ..., ap] and b = [by, b, ..., bx] of lengths M
and N, with elements a; and b; taken from a finite character set x. We will
employ a frequently used null model with independently identically distributed
letters where the probability of having two sequences is given by the distribution
function
Pfabl= [ plam)-pb), (2)
1<m<M
1<n<N

with p(a) being the background frequency of the element a, and ., p(a) = 1.

2.1 Probabilistic global alignment

We first review probabilistic global alignment of the sequences a and b. We
adopt the approach of Bishop and Thompson (1986), evaluating probabilistic
global alignment as the likelihood of observing the sequences a and b given
a fictitious evolution model producing pairs of related sequences a and b. For
the purpose of illustration, let us consider the following simple version of this
evolution model: Start with empty sequences a and b and go through the hidden
Markov model illustrated in Fig. [l

e Until one of the sequences reaches the desired length N, there is a probability
v for a “deletion step” and the same probability v for an “insertion step”.
— if the “insertion mode” is selected, generate a new element a according
to the background frequencies p(a) and append it to sequence a.
— if the “deletion mode” is selected, generate a new element b according
to the background frequencies p(b) and append it to sequence b.
— if neither deletion nor insertion is selected, generate a pair of elements
(a,b) according to some joint probability distribution P(a, b and append
a to sequence a and b to sequence b.
e If one of the sequences reaches the desired length N generate random ele-
ments according to the background frequencies p(a) and append them to the
shorter of the two sequences until they both have the length N.

! The joint probability distribution P(a, b) is often chosen as 7 (bla)p(a) where T (b|a)
is the transition probability for a mutation from element a into element b.
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Fig. 1. Schematics of the hidden Markov model M for sequence evolution. The different
states are B for the “begin” state, I for the “insertion” states, D for the “deletion”
states, and P for the “pair emission” state. The arrows indicate the allowed transitions
between the states, with transition probabilities as given in the text. Sequence elements
are “emitted” according to the following rules: An element « is emitted into sequence
a with probability p(a) every time the state I is visited, and an element b is emitted
into sequence b with probability p(b) every time the state D is visited. In state P a
pair (a,b) is emitted according to some joint distribution P(a,b) and elements a and b
are appended to sequences a and b respectively.

The “weight” Wa, b] for a specific random sequence a mutating into a se-
quence b can be computed iteratively (Bishop & Thompson, 1986) by introduc-
ing an auxiliary variable W, ;:

Wi = w(ai,b;) - Wi_1j1 (3)
+v- [W¢717j + Wi,jfl] ,
with
P(a,b)
p(a)p(b)
being the net substitution probability. W is then obtained as
Wla,b] = [2v + w(an, bn)] - War—1,8-1
M—1
+ ) v+ wlai,by)] - Wican—1 (5)

w(a,b) = (1 —2v)

<.
[

+ v+ w(anm, bj)] - War—1,j-1.
J

=2

Il
-

where Wi<m<m,1<n<n is obtained by iterating the recursion relation (B) from
the initial conditions

Wiso,j=0 = V' 1<4< M and (6)
Wizoj>0 = v 1<j<N. (7)

The recursion relation (B]) is nothing but the probabilistic version of the
Needleman-Wunsch global alignment algorithm (Needleman & Wunsch, 1970)
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with linear gap cost. Alternatively, the Needleman-Wunsch algorithm is just the
Viterbi version of Eq. (B]). In the context of alignment, v controls the gap penalty
and w(a,b) the substitution cost. Note that due to the condition ), we have

> Wia,b] - Ryla,b] = 1, (8)
[a,b]

which is nothing but the statement of probability conservation for the different
ways sequences can be mutated into each other. Note that Wa, b] - Py[a, b] is
the likelihood of generating the sequence pair by the mutation model (Thorne
et al., 1991, 1992).

2.2 Probabilistic local alignment

Local alignment identifies subsequences, e.g., & = [am/, Gm/41, ..o, Q] and b=
[br/s brr g1,y ooy bp] with 1 <m/ <m < M and 1 < n’ < n < N, whose mutual
global alignment score S(m’,n’;m,n) is the highest, especially in cases where
the global alignment of the complete sequences yields negative total scores, i.e.,
S(1,1; M, N) < 0. Instead of directly optimizing over the four variables m’, n/,
m, and n, the Smith-Waterman algorithm (Smith & Waterman, 1981) proceeds
by first computing an auxiliary score H(m,n) = max,, ,» S(m’,n’;m,n) by
slightly modifying the Needleman-Wunsch algorithm. Then it maximizes over
the H’s. This procedure maintains the computational complexity at O(M - N)
as in global alignment.

The same strategy can be adopted in probabilistic local alignment if in order
to be really looking for local similarities the scoring parameters are chosen such
that the total weight of global alignment is small, i.e., such that In Wy, n < 0.

Let Wy n7:m n be the likelihood of the global probabilistic alignment of the
subsequences a and b. It is computed by applying the recursion Eq. (@) with
the intial conditions Eqgs. (6) and (@) to the sequences [@m/, Gm/t1, .., Q] and
[bn7, by 41, -, bp]. The likelihood is then given by W nrm.n = Win—m/+1,n—n/+1-

Then, we introduce an auxiliary variable

m n
1+ Z Vm/ + Z an + Z Wm’,n’;m,na (9)
m/=1 n’/=1

1<m'<m
1<n/<n

Zm,n

which is the total weight of all subsequence pairs including (a,,, b, ), plus the
null alignments. Z,, , can be computed according to the probabilistic version of
the Smith-Waterman algorithm,

Zij=1+w(a;,bj) Zi—1j-1+v-[Zic1; + Zi j—1], (10)

with the boundary conditions Zp; = Z; 9o =1, for 1 < i <mand 1 < j <
n. Alternatively, the Smith-Waterman algorithm can be viewed as the Viterbi
version of ([I0).
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The total weight Z characterizing the fully probabilistic alignment is ob-
tained as the sum of the Z’s, i.e., as

Z= > Znn (11)

1<m<M
1<n<N

However, even the shape of the distribution of the fully probabilistic local align-

ment score In Z is not very well understood rendering the calculation of p-values

for this score very hard. To overcome this difficulty, we introduce a maximum-
log-likelihood (MLL) score

S= max InZz,, (12)
1<m<M
T<n<N
to characterize the quality of the alignment. Eqs. ({0) and (I2) define the hybrid
algorithm which we will focus on from here on.

3 Statistics of hybrid alignment

In this section we will show that the score distribution of hybrid alignment is
a Gumbel distribution with A = 1 independent of the scoring system. We will
moreover characterize the extremal ensemble of the algorithm, i.e., the sequence
pairs exhibiting similarities that a given scoring system most sensitive to. This
knowledge about the extremal ensemble will help us to characterize the deviation
of the Gumbel parameters due to the finite sequence length.

3.1 Score landscape and islands

For the Smith-Waterman algorithm, Olsen et al. (1999) utilized the “score land-
scape” H(m,n) to characterize the tail of the Gumbel distribution. The land-
scape consists of a collection of essentially uncorrelated positive-scoring “is-
lands”, separated by a “sea” at H = 0. The peak scores of the islands are
found to follow Poisson statistics, from which the Gumbel parameters A and K
can be directly derived. Olsen et al.’s study indicates clearly that the key to
understanding the Gumbel distribution is to characterize the probability tail of
obtaining a single large island.

Due to our definition (I2)) of the MLL score as a maximum, the distribution
of S is again expected to be of the Gumbel form. (This is not true for the score
In Z of the fully probabilistic local alignment, since the score Z is defined in
Eq. (II) via the sum rather than the maz operation.) Similar to what was found
by Olsen et al. (1999), the pertinent score landscape In Z,, ,, for hybrid alignment
consists of islands which are essentially uncorrelated. Instead of being separated
by the “sea” of zero scores, our MLL islands do have some minor positive score
background in between. Since we are interested in the high scoring islands, the
minor positive-score background does not affect the identification of the high-
scoring islands, see Fig. Bl for example. Since the MLL score is the maximum of
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Fig. 2. The In Z landscape from aligning two random sequences. This figure is a pro-
jection of a three dimensional plot. One sequence is laid along the 4 direction while
the other is laid along the j direction. The MLL score In Z; ; is then plotted along the
third direction labeled by In Z. The gray scale is used in such a way that the larger
the MLL score, the darker the point (¢, 7,1n Z). As shown in this figures, a sea of small
ripples separate one medium-sized island from a less significant one.

many of these uncorrelated island peak scores, the statistics of the MLL score
(i.e., the Gumbel parameters) can be deduced if the statistics

G(h) = Pr{peak island score > h}

of the individual island peak scores is known.
Thus, it is our goal to calculate this peak score distribution. We will do so
in several steps. First, we compute the auxiliary quantity

D(h|L) = Y 6(h—InWi[a,b]) - Pyla,b], (13)
{ab}

that a global probabilistic alignment of two sequences of length L will have
the score about h. Then, we will relate this distribution to the island peak
score distribution. Basically, we will establish that high-scoring global alignments
which contribute to D(h|L) correspond to high-scoring islands which contribute
to G(h). We find that

G(h) ~ e M (14)

with A = 1. Since S is the maximum of a large number of independent random is-
land peak scores obeying the distribution (I4)), it has Gumbel statistics (Gumbel,
1958) with the same A. This strategy of computing local alignment score statis-
tics using the statistics of global alignment has been examined in detail in the
context of Smith-Waterman alignments and applied to the special scoring sys-
tem corresponding to the Longest Common Subsequence problem (Bundschuh,
2000).
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3.2 Large-score statistics

The first step in the derivation outlined above is very important since it does
not only give us an expreession for the auxiliary quantity D(h|L). It also gives
us information on the extremal ensemble, i.e., on the typical sequence pairs that
lead to high-scoring global alignments and thus high-scoring islands. Therefore,
we devote this whole section to this computation.

We start by characterizing the distribution D(h|L) for h > 1 by a simple
maximization principle. Instead of computing D(h|L) directly, let us first con-
sider a different (but related) quantity, the probability D that the sum of the
score In W, from N > 1 independent global alignments of random sequences of
length ¢ is H, i.e.,

N N
Dy(HIN) = > [ H =D h | [ Ptsl0), (15)

{h;} Jj=1

where h; is the score of the j'" draw. Using the definition (I3)) for D(h|¢) above,
we find (with the help of Stirling’s formula)

De(H|N) = Zexp NZanbln<Q [[a:]])>

{Qe} {a,b}

5[ H=N D Qila,blnWila,b] |, (16)
{a,b}
where Qg[a, b] is the fraction among the A draws that contains a particular
sequence pair [a, b] of lengths ¢.
For H >> 1, the right-hand side of Eq. (16 can be evaluated in saddle point
approximation with the result

Dy(HIN) = e M. 5(H — Nla) (17)
where
a=/("1 Z Q7 la,b]ln Wy[a, b] (18)
{a,b}
and the Q}[a, b] are given by the saddle point condition
Qila,b] = W'[a,b] - Pola, b]. (19)
The value of X is fixed by the normalization condition for Q*:
1= Z Qila,b] = > W[a,b]Py[a,b]. (20)
[a,b] [a,b]

Comparing (20) to the normalization condition (8] for the correlated sequence
pairs generated from the evolution model, we see that the solution to Eq. (20)
is

A=1. (21)
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This implies that
QZ [a, b] =W [av b] Py [aa b]v (22)

which describes the sequence configurations contributing significantly to the
large-H events. We shall refer to this ensemble of sequence pairs as the extremal
ensemble. Inserting W, = Q} /Py into Eq. (I8)), we see that a > 0 is nothing
but the relative entropy (per length) between the extremal and the random en-
semble. Since Wy[a, b] - Py[a, b] is also the likelihood of obtaining the correlated
sequence pair [a, b] from the evolution model, Eq. (I8) shows that « is also the
average score (per length) of the global probabilistic alignment of the correlated
sequence pair [a, b]. Eq. (7)) states that there exists a preferred number of draws,
N* =H/(£ - ), which maximizes the probability of observing high scores H.

On first sight, the distribution Eq. (7)) seems not to be normalized. However,
Eq. (I7) describes only the high-# component of the full distribution Dy(H|N).
Most of the weight of this distribution is by our assumptions in the region of
‘H < 0. Eq. (IT) only applies to the region H > 1 and therefore does not have
to be normalized by itself.

What does Dy(H|N) have to do with the quantity of interest D(h|L), which
describes the probability of obtaining a score h from the global alignment of
a single sequence pair of length L 7 The statistics of the global alignment of
correlated sequences has been studied (see, e.g., Hwa & Nattermann, 1995) in
terms of the related problem of directed polymers in a random medium (Hwa &
Lassig, 1996), and the results have been elaborated in the context of sequence
alignment by Drasdo et al. (1998). These studies found that In W, can be de-
composed into a sum of essentially independent pieces of some length £. Thus,
the score In W, of the high-scoring sequence pairs can be broken into a sum of
statistically-independent pieces, each corresponding to the score In W, of a pair
of subsequences of length [ < L as long as | > £. Then

D(h|L) = Dy(h|L/1) (23)
L/l L/l
=> 5| h=> hi| [[DP;l1)
{h;} i=1 ) j=1
~e " 5(h— La), (24)

where the last line follows from Eq. (I). The approximation (23) can be further
justified as explained in Appendix A. Here, we advertise that we indeed get the
announced Poisson statistics with A = 1 for the probabilistic global alignment
scores which generate the islands together with the information that these high
scores are created by pairs of correlated subsequences (a,b) as given by the
extremal ensemble Q;[a, b].

3.3 Island peak scores

We now turn to derive the island peak score distribution G(h) from the result
Eq. (Z4). This will still require several steps. First, we will calculate the statistics
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of Z,, n for a fixed choice of (m,n). Afterwards, we will use this statistics to
obtain G(h). The connection between the distribution D(h|L) and the statistics
of Z,, , for a given (m,n) is made by the observation that Z,,, for a given
(m,n) is for large values statistically equivalent to the quantity

Z=1+Y Wp (25)
L=1
where o
WLEW[al...aL,bl...bL}. (26)

The derivation of this equivalence is quite technical and therefore relegated to
appendix B. It also shows, how large values of Zm,n are generated by sequence
configurations which can be described in terms of the extremal ensemble Q*[a, b].
Here, we will exploit it by noting that W, is distributed according to the dis-
tribution D(h|L). For each L Eq. (24) tells us that roughly W, takes the value
exp(aL) with probability exp(—al) and the value 0 with the remaining proba-
bility 1 — exp(—aL). Of course, the W, are not statistically independent from
each other. However, due to the exponential separation of the possible values of
the W, for different L, the probability Pr{Z = z} for some large enough z is
very well described by the probability that W, or one of the W, with L very
close to Ly = é In z takes its non-zero value independently of the other W . The
values of W, with L < Ly do not matter since they contribute only little to the
sum Eq. (25) and the probability for W, with L > Ly being different from zero
is exponentially smaller. Thus, Pr{Z = z} ~ 1 or equivalently

Pr{lnZ,, =h}~Pr{lnZ =h} ~e " (27)

Finally, we want to relate this distribution of Z,,, at fixed (m,n) to the
island peak score distribution G(h). Again, the exponential dependence of the
score distribution on the score h is essential. The fact, that the probability to
find a score h at a given point (m,n) on the scoring lattice is an exponential in
the score implies that increments in score from one lattice point to the next are
essentially independent of the actual score h at this lattice point. Specifically,
the probability of finding an even higher score at some other neighboring point
(m/,n’) is essentially independent of the score h itself either. Thus, for any
(m,n) with Z,, ,, sufficiently large, the probability of (m,n) being an island peak
point is some number which depends on the value of Z,, ,, at most very weakly.
Therefore, the probability for an island peak score being h is approximately
proportional to the probability of the score In Z,, ,, being h for a fixed (m,n).
We calculated the latter with the result given in Eq. (Z7)). Therefore we have the
exponential statistics G(h) ~ e~" for the island peak score distribution which
implies the Gumbel statistics of S with A = 1 as discussed above.

3.4 Sequence length correction

In order to verify the arguments and derivations leading to this result and the
extremal ensemble @} [a, b] we have performed extensive numerical simulations.
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However, as presented thus far, our results pertain only to the asymptotic limit
of infinitely long sequences. To compare to the numerics performed at finite
sequence lengths, it is necessary to compute the magnitude of the corrections to
this result due to the finite sequence length which we will turn to now.

For sequences of finite length we expect a deviation from the asymptotic value
A = 1 predicted by the above considerations. In order to assess the significance of
an alignment of two sequences of finite length we therefore have to characterize
this deviation as well.

It was pointed out by Altschul (1991) in the context of gapless local alignment
and more recently by Altschul and Gish (1996) for gapped alignment that in us-
ing the Gumbel distribution () for finite length sequences, one should “correct”
the lengths M and N which appear in (I]) by a score-dependent amount L(S), and
use instead the effective sequence lengths M’ = M — L(S) and N’ = N —L(S). It
results from the fact that the available area to launch an island is reduced by the
size of the island on the alignment lattice, which is the M x N square obtained
by putting one of the two sequences along the Z direction and the other sequence
along the ¢ direction in the plane.

As an extreme example, one notes that to have an island of the size of the
entire alignment lattice, the island must be launched near the tip of the lattice;
in this case, the correction term L(S) is nearly the size of the lattice. Generally,
one should take L(S) to be the average island lengtH? {(S) corresponding to
the score of the maximum island peak S. Including this correction, the Gumbel
statistics becomes

Pr{S <z} =exp [-K - (N —{(z))*e ], (28)

where we have used the more convenient accumulated distribution, and have
taken the two sequences to be of equal length N for simplicity. Using the linear
island profile £(z) = a~ 'z for large islands where « is the “relative entropy”,
Altschul et al. (2001) noted that the terms in Eq. (28)) can be rearranged into
the classic Gumbel form, i.e.,

Pr{S <z} =exp |—K(N)- Nze_/\(N)'w} ) (29)

with the effective size-dependent parameter A\(N) = A+2/(aN) to leading order
in 1/N. More generally, one has the relation

A(N) = A+ 2/5(N), (30)

where 7(¢) is the inverse of the function ¢(c), and gives the average score for
islands of length ¢. Note that correction formulae such as &) are applicable
as long as the number of islands in the alignment lattice is large. They should
however not be applied to very small N’s where the sequence lengths are of the
same order as the island sizes, and the Gumbel distribution itself breaks down.

2 The island width is typically much smaller than its length and hence does not con-
tribute to leading orders.



14 Yi-Kuo Yu, Ralf Bundschuh, and Terence Hwa

It is also possible to extend the analysis discussed above for the parameter
K. Using the form 4(z) = az + ¢ in Eq. (28) and rearranging terms into the
Gumbel form Eq. (29), we find the result

¢ \2
K(N) = K- (14 ) 31
(™) + =5 (31)
which is analogous to Eq. (B0) for A(N). Unlike the case for A, we have not yet
developed a theory to compute the asymptotic value of K. It is however still
possible to check the form of the correction formula (31I) using the numerically
obtained values of K(N); see below.

4 Numerics

Although we presented our statistical theory here only based on the simplest
linear gap function, it can be easily generalized to incorporate affine gap costs
as well. Since affine gap costs are much more frequently used, we present our
numerics based on affine gap costs only. In our affine gap function, we have used
the symbol p to denote the weight of gap initiation and v to denote the weight of
a gap extension. It turns out that an equation similar to (@) still exists in which
the scaling constant for the transition matrix now depends on both p and v. The
joint probability distribution P(a,b) is given in terms of a scoring matrix s(a, b)
by P(a,b) = e*uss(@Yp(a)p(b) with Ay defined by Dab eMes(@)p(a)p(h) = 1.
For the s(a,b), we use Dayhoff’s PAM substitution matrices (Dayhoff et al.,
1978).

We use two sets of scoring parameters described by PAM distance d = 120,
uw=2"55 1y =2795and PAM distance d = 250, y = 275, v = 2703 respectively.
For brevity, we refer to the first set of parameters as “PAM-120" and the second
set as “PAM-250".

We start with the numerical verification that the MLL score obeys Gumbel
statistics. We use the two sets of scoring systems PAM-120 and PAM-250 sat-
isfying the conservation condition for affine gaps. Figs. Bla) and (b) show the
pdf’s of S obtained from the alignment of 50,000 pairs of random sequences of
lengths 300 each, generated according to the null model (@). We see that the
pdf’s are well-fitted by the Gumbel distribution ().

In order to measure (V) in a very effective way, we made use of our knowl-
edge of the extremal ensemble. Instead of aligning random sequences and waiting
for large islands, we directly generated typical island score landscapes using the
correlated ensemble Q% [a, b] and read off the average score for each length N.
The results corresponding to the PAM-120 and PAM-250 scoring systems are
shown in Fig. @l They are well fitted by the form & = aN + ¢, with statistical
uncertainties in a and ¢ well under 1%. The most striking thing about this result
is that the data points in Fig.[4 were averaged over only 15 pairs of alignments
and took practically no time to generate, while determining « to such precision
using direct simulation or island counting will take weeks on the same computer.
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Fig. 3. The pdf’s for the semi-probabilistic alignment of random sequences using the
two parameter sets (a) PAM-120 and (b) PAM-250. The pdf’s are obtained by normal-
izing histograms of 50,000 pairs of random sequences of length 300 each.
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Fig. 4. The circles and squares represent the alignment score of correlated sequences
taken from the extremal ensemble, averaged over only 15 pairwise alignments, corre-
sponding to the PAM-120 and PAM-250 scoring systems respectively. The lines repre-
sent the respective least-square fits to (N) = aN + c¢. The fits, which are excellent
down to N = 50, give a = 0.0554, ¢ = 4.85 for PAM-250 and o = 0.2144, ¢ = 5.22 for
PAM-120.

With the accurate determination of (N, we are now in a position to test the
prediction of the sequence length dependence ([@0), and with it, the prediction
of the asymptotic result A\ = 1. The predicted expression of A(N) using the
numerically obtained a(N)’s in Eq. (B0) is plotted as the line in Figs. B(a) and
(b) for the PAM-120 and PAM-250 scoring systems respectively. Also plotted are
the data points obtained from fitting the pdf’s for sequences of different lengths
to the Gumbel form (). We find very good agreement between theory and
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Fig. 5. Direct comparisons of the numerical values of A\ obtained from fitting pdf’s to
Gumbel form (@) and the theoretical prediction for (a) PAM-120 and (b) PAM-250

scoring systems.

measurements down to sequence length of N = 75 for PAM-120 and N = 150
for PAM-250. (For smaller N’s, the pdf’s are no longer well-described by the
Gumbel distribution for reasons explained earlier.) The striking agreement found
lends strong support to the theory presented.

To test the prediction of the sequence length dependence of K (N), we simply
plot on the vertical axis K(N)/(1+¢/(aN))?, using the values of ¢ and « deter-
mined from Fig.[4 for the corresponding scoring system. According to Eq. (31)),
this simple transformation should render the data points N-independent, and
give the value of the asymptotic K. We applied this transformation to K(N)
separately for the PAM-120 and PAM-250 scoring systems; see Figs.[d (a) and

05 05
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Fig. 6. Dependence of K(N) on the sequence length for (a) PAM-120 and (b) PAM-
250 scoring systems. The horizontal lines indicate the values of the asymptotic K’s
obtained from data at larger N’s (not shown).
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(b). Other than the smallest size of N = 75, the data points are approximatel
N-independent, hovering around the asymptotic values indicated by the hori-
zontal lines. The results suggest that Eq. (3I)) does capture the dependence of
K(N) on the sequence length correctly. Consequently, it is only necessary to
determine K (V) for one sequence length, say, at N = 300 by an island counting
method similar to Olsen et al. (1999), or at N — oo if the present theory can
be extended to compute K. From this, the value of the effective K for all other
N’s can be deduced from the sequence length dependence formula (BI)).

5 Summary

In this paper, we studied the extremal statistics of probabilistic sequence align-
ment both analytically and numerically. We find that while the statistics of
straightforward probabilistic alignment is not understood, the slightly modi-
fied semi-probabilistic alignment is well described by Gumbel statistics. For the
semi-probabilistic alignment, we can predict the Gumbel parameter A, including
its sequence length dependence, for different scoring functions and parameters.
Moreover, for a given scoring scheme, we have characterized the corresponding
extremal ensemble of most detectable sequence-pairs. This allows for an optimal
choice of scoring parameters for a given search goal. Our results are verified nu-
merically by using various PAM substitution matrices and affine gap functions.

In our study, we have not focused on the behavior of the other Gumbel pa-
rameter, K, which is more difficult to compute analytically than \. It is however
straightforward to determine K numerically by extending the island method
of Olsen et al. (1999) to the semi-probabilistic alignment (Bundschuh et al.,
to be published.) With the help of a precisely determined A, and the formula
for the sequence length dependence of K, it is possible to fix the value of K
for all sequence lengths by counting islands from a single pairwise alignment of
managable size.

Let us close with a general remark: While the numerics presented in the
present study was restricted to position-independent scoring functions, this is
not a prerequisite for the application of our theory. In fact, we expect that
the asymptotic value of A to remainsl as long as the probability conservation
condition (H) is locally satisfied at each node of the alignment lattice. This can
be readily accomplished for position-specific substitution and indel weights by
generalizing our previous result (Yu & Hwa, 1999).
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6 Appendix A: Consistency of our approximations

As a simple consistency check of our assumption (23)), we see that insertion of
Eq. @4)) into Eq. ([B) recovers the result ([I7), as long as « is length-independent.
To probe the validity of the assumption more closely, let us introduce the nota-
tion (...)* to be the statistical average over the extremal ensemble Q5 = W, - P,
ie.,

(Fla,b])* = ) Fla,b]W[a,b|P[a,b]. (32)

{a,b}

Then, the distribution ([[3)) can be rewritten as

D(h|L) = e "(5(h — In Wy[a, b]))*, (33)
while the result of our assumption, Eq. (24]), can be re-written as
D(h|L) = e "5 (h — (InW[a,b])*). (34)

Thus, the approximation made here is to replace the random variable In W, by
its typical value in the extremal ensemble, E*[In W] = (In W [a, b])*. Approxi-
mations of this nature are poor in cases where the distribution of In W7, is broad,
e.g., if

var(InWp) = (InWi[a,b])* — E*[In W, ]?

is comparable to E*[InW.]2. Due to the fact that the alignment of a pair of
sequences of the extremal ensemble can be split into independent pieces of length
¢ as discussed in the main text, we get var(lnWp) = L/ for L > ¢ according
to the central-limit theorem. Since E*[ln W] = aL, we have

var(InWp)/E*[InWg]* — 0
in the limit of large L. In this way, the equivalence between Eq. (33) and Eq. (B4)

is justified.

7 Appendix B: Z and W

In this appendix we show that the restricted local alignment weight Z,,, at
fixed (m,n) is at large values statistically equivalent to Z as defined in Eq. (7).
First, we note that due to the symmetry of W,/ ».m,» and the fact that random
sequences are statistically equivalent to their reverse sequences, the statistics
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of Z, , is identical to the statistics of ’Z\M,T,LN,n defined by reversing the se-
quences, i.e., by

M—m N—n

~ ’ !

Zmn =1+ E v+ E v+ E Win+1,n+1;m - (35)
m’'=1 n’=1 m4+1<m/<M

n+1<n’<N

Moreover, since we assume that the distribution of Z,, ; is translationally in-
variant as long as we stay far enough away from the edges m ~ 1 and n =~ 1, we
can without loss of generality pick (m,n) = (M, N) and study the statistics of
2070. This statistics should at most very weakly depend on the values of Zn,n
for very large m and n and we can therefore extend the summations in Eq. (B5)
to infinity. To summarize, we expect that the statistics of Z,, ,, for a fixed (m,n)
are identical to the statistics of

0o oo
PSR M
=1 n’=1

||P18

Z 1,1;m/' ,n’- (36)

In order to study Z we rewrite it as

Z=1+Y Wy (37)
L=1
with
N L—-1 L—-1
We =2 4+ Wit o+ > Winnw + Wi L. (38)
m/=1 n’=1

This quantity looks very similar to W as defined in Eqs. (Z8) and (B) and indeed
we can easily convince ourselves using Eq. () that

I —~ 1 —
Wp <Wp < EWL- (39)
Thus, the Z defined in Eq. (25) bounds Z as

Z<7Z< L

T z/Z (40)
and since we are only interested in the logarithms of these quantities they become
statistically equivalent for large enough values of Z.

Under all these transformations, sequence configurations which make Z,, ,
large for a fixed (m,n) are directly related to configurations of the (reversed !)
Sequences apmGm—1 - .. Gm—r, and bpby_i...b,_r, which make WLO large for
some Lg. Thus, these reversed sequences are drawn from the extremal ensemble
Qiolamam—1 ... @m_1y,0nbn_1...0,_1,] derived in Eq. 22).
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