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Statistical Signi� cance of Probabilistic Sequence
Alignment and Related Local Hidden

Markov Models

YI-KUO YU1 and TERENCE HWA2

ABSTRACT

The score statistics of probabilistic gapped local alignment of random sequences is investi-
gated both analytically and numerically. The full probabilistic algorithm (e.g., the “local”
version of maximum-likelihood or hidden Markov model method) is found to have anoma-
lous statistics. A modi� ed “semi-probabilistic” alignment consisting of a hybrid of Smith–
Waterman and probabilistic alignment is then proposed and studied in detail. It is predicted
that the score statistics of the hybrid algorithm is of the Gumbel universal form, with the
key Gumbel parameter l taking on a � xed asymptotic value for a wide variety of scoring
systems and parameters. A simple recipe for the computation of the “relative entropy,” and
from it the � nite size correction to l, is also given. These predictions compare well with
direct numerical simulations for sequences of lengths between 100 and 1,000 examined us-
ing various PAM substitution scores and af� ne gap functions. The sensitivity of the hybrid
method in the detection of sequence homology is also studied using correlated sequences
generated from toy mutation models. It is found to be comparable to that of the Smith–
Waterman alignment and signi� cantly better than the Viterbi version of the probabilistic
alignment.

Key words: sequence alignment, statistical signi� cance, maximum likelihood, hidden Markov
model.

1. INTRODUCTION

Computer-assisted sequence comparison tools such as BLAST (Altschul et al., 1990) and FASTA
(Pearson, 1988) have become an integral part of modern molecular biology. The widespread usage

of these tools for database searches is closely tied to their ability to assign a p-value to each pairwise
alignment (Karlin and Altschul, 1990). The p-value is much more meaningful than the alignment score
itself as it gives the probability that a score could have arisen by chance.

There exist many other applications of bioinformatics where dynamic programming algorithms analogous
to those of sequence alignment are extensively used. Some particularly noteworthy examples are application
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of maximum likelihood methods and hidden Markov models (HMM) to protein modeling (Krogh et al.,
1994), gene � nding (Burge and Karlin, 1997), motif search (Bucher et al., 1996; Grundy et al., 1997),
and even sequence alignment itself (Thorne et al., 1991, 1992; Hughey and Krogh, 1996); see the book
by Durbin et al. (1998) for a recent review. These methods differ from the usual alignment algorithms,
e.g., that of Smith and Waterman (1981), in that they are probabilistic in nature. It will be very useful if
statistical characterization such as those provided by BLAST can be extended to the probabilistic methods.
There are, however, two major obstacles in the way: a) unlike sequence alignment, for which the null
statistics is known (either exactly or empirically) to be of the Gumbel extremal distribution (Gumbel,
1958), the form of the extremal statistics for probabilistic algorithms such as the HMM is not known at
all; b) even for those whose null statistics are of the Gumbel form, the dependence of the two Gumbel
parameters on the hundreds of model parameters is generally so complicated that it is hopeless to determine
the Gumbel parameters in an ef� cient enough manner to render them useful.

In fact, the obstacle (b) is already a problem for sequence alignment with gaps, which is known empiri-
cally to obey Gumbel statistics (Smith et al., 1985; Collins et al., 1988; Mott, 1992; Waterman and Vingron,
1994a, 1994b; Altschul and Gish, 1996; Olsen et al., 1999). This problem is partially overcome in BLAST
by precomputing the null statistics for a � xed set of scoring parameters. This, however, makes the method
somewhat in� exible and especially becomes a problem for position-speci� c scoring functions (Henikoff
and Henikoff, 1994) such as those used in PSI-BLAST (Altschul et al., 1997). The latter is needed for
detailed modeling of protein families, folds, etc. However, because of the obstacle (b), PSI-BLAST is
limited presently to uniform gap penalty which is a very costly restriction.

In this paper, we study analytically and numerically the null statistics of probabilistic alignment as an
example of the general class of maximum likelihood and HMM methods. We � nd numerically that the
probabilistic alignments lead to anomalous statistics, with the tail of the log-odd score distribution being
even broader than the exponential tails of the Gumbel distribution. We then propose a “semi-probabilistic”
alignment which is a hybrid of the probabilistic and the usual Smith–Waterman-type algorithm and has the
same computational complexity as the probabilistic algorithm. We focus on the extremal score statistics of
the semi-probabilistic alignment. We show heuristically that its extremal statistics is of the Gumbel form
and give conditions which � x the Gumbel parameter ¸ for a wide range of scoring functions/parameters.
Furthermore, we give a straightforward recipe for the computation of the relative entropy which character-
izes the information content of an alignment. The knowledge of the relative entropy allows us to predict
also the � nite-size correction to ¸, which is important for characterizing the statistics of short sequences.
Comparison of our theoretical results to effective ¸ values obtained from direct numerical simulation of
random amino acid sequences using the PAM substitution matrices and af� ne gap functions shows good
agreement (to within the numerical accuracy of » 1%) for sequence lengths ranging from 100 to 1,000. We
further tested the sensitivity of the semi-probabilistic alignment, by aligning correlated sequences generated
from toy mutation models. For our simple test sequences, the sensitivity is of the same order or slightly
better than that of the Smith–Waterman algorithm and can be signi� cantly better than the Viterbi ver-
sion of the full probabilistic algorithm. Taken together, we conclude that the semi-probabilistic alignment,
with its well-characterized statistics, can be applied in a wide variety of contexts from simple sequence
comparisons to detailed sequence modeling.

2. REVIEW OF ALIGNMENT AND STATISTICS

2.1. Alignment algorithm

Let a D [a1; a2; : : : ; aM ] and b D [b1; b2; : : : ; bN ] be two sequences of lengths M and N respectively,
with elements ai and bj taken from a � nite character set Â . Let Oam0Im D [am0 ; am0C1; : : : ; am] and Obn0In D
[bn0 ; bn0C1; : : : ; bn] denote subsequences of a and b respectively, with 1 · m0 · m · M , and 1 · n0 · n ·
N . A restricted global alignment OA of the sequences Oam0Im and Obn0In consists of an ordered set of pairings
of their elements, with each other or with gaps, e.g., OA D f.am0 ; bn0/; .am0C1; ¡/; .am0C2; bn0C1/; : : : ;

.am; bn¡1/; .¡; bn/g for the example shown in Fig. 1(a). Here, (ai ; bj ) denotes the pairing of elements ai

and bj , and (ai; ¡) and (¡; bj ) denote pairing of an element with a gap; we refer to these three types of
pairings as substitutions, deletions, and insertions, respectively. In typical alignment applications, pairings
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FIG. 1. Example of an alignment and the corresponding directed path. (a) A possible global alignment of the
sequences Oam0Im and Obn0In; (b) the directed path representation of the alignment shown in (a). For a restricted global

alignment OA of Oam0Im and Obn0In , the corresponding directed path must have one of its ends (the “backward end”)
� xed at the lower left corner of the cell (m0, n0) and the other end (the “forward end”) � xed at the upper right corner
of the cell (m, n). The two dashed lines which mark the right and upper boundaries of the alignment region will be
referred to as the “forward boundaries” in the text.

of gaps to each other are not allowed. It is also a common practice to restrict the order of insertions
and deletions, e.g., to forbid insertions following deletions, in order to avoid overcounting of the same
alignments.1 With these restrictions, each alignment OA can be uniquely represented by the set R of index
pairs (i; j ) for all paired elements (ai; bj ); e.g., R D f/m0; n0/; .m0 C 2; n0 C 1/; : : : ; .m; n ¡ 1/g for the
example in Fig. 1(a). Generally, we shall use the notation

R.m0; n0I m; n/ D f.m1; n1/; .m2; n2/; : : : ; .ml; nl/g (1)

to denote the set of l pairings in an alignment. A valid restricted global alignment OA for the sequences
Oa and Ob is then any set R of index pairs satisfying the condition m0 · m1 < m2 < : : : < ml · m and
n0 · n1 < n2 < : : : < nl · n. R can also be viewed as coordinates of a directed path on the alignment
grid, with the “backward end” of the path � xed at the lower left corner of the cell (m0; n0) and the “forward
end” � xed at the upper right corner of the cell (m; n); see Fig. 1(b).

The score S of the alignment OA is obtained by summing up the individual pairing scores, e.g., s.ai; bj /

for the pairing of elements ai and bj , and the “gap scores.” For protein sequences, the frequently used
pairing scores are the PAM or BLOSUM substitution scores (Dayhoff et al., 1978; Henikoff and Henikoff,
1992), constructed from empirical amino acid substitution frequencies. The frequently used af� ne-gap
function assigns a cost of ± C " ¢ .` ¡ 1/ for each consecutive run of ` gaps in a given sequence. An
additional cost ±0 can be assigned to penalize the situation where a run of gaps in one sequence is

1For example, the alignments f.a1; ¡/; .¡; b1/; .a2; ¡/g and f.a1; ¡/; .a2; ¡/; .¡; b1/g both describe the situation
where the elements a1 and a2 are not aligned with b1 and thus should not be multiply counted.
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immediately followed by a run of gaps in the other sequence.2 Let the length of the two gaps separating
two pairings be `1 and `2, respectively. Then the gap cost function ° can be written as

° .`1; `2/ D

8
>><

>>:

0 `1 D 0; `2 D 0
± C " ¢ .`1 ¡ 1/ `1 ¸ 1; `2 D 0
± C " ¢ .`2 ¡ 1/ `1 D 0; `2 ¸ 1
±0 C 2± C " ¢ .`1 C `2 ¡ 2/ `1 ¸ 1; `2 ¸ 1:

(2)

Given the scoring functions s, ° and the alignment path R, the score for this alignment of Oa and Ob is
uniquely determined:

S[RI OaI ObI s; ° ] D
lX

kD1

s.amk
; bnk

/ ¡
lX

kD0

° .mkC1 ¡ mk ¡ 1; nkC1 ¡ nk ¡ 1/]; (3)

where we used .m0; n0/ D .m0 ¡ 1; n0 ¡ 1/ and .mlC1; nlC1/ D .m C 1; n C 1/ to compact the notation.
The alignment with the highest score (for a given sequence pair [Oa, Ob] and given scoring functions) is the
optimal restricted global alignment OA¤, with score

Sm0;n0Im;n D max
R .m0;n0Im;n/

fS[RI OaI ObI s; ° ]g: (4)

This score can be computed via a well-known dynamic programming algorithm provided by Needleman
and Wunsch (1970). Below is the simplest example for the case of linear gap cost with ± D ", ±0 D 0, and
no constraint in the order of occurrence of insertions and deletions. Extension to the af� ne gap function
(2) is given in Appendix A. To compute Sm0;n0Im;n, one simply iterates the following recursion relation

Sm0;n0Ii;j D max
»

Sm0;n0Ii¡1;j¡1 C s.ai ; bj /

Sm0;n0Ii¡1;j ¡ "; Sm0;n0Ii;j¡1 ¡ "

¼
(5)

for i D m0 to m and j D n0 to n, with the “boundary condition”

Sm0;n0Ii;jDn0¡1 D ¡" ¢ [i ¡ .m0 ¡ 1/]I Sm0;n0Ii¡m0¡1;j D ¡" ¢ [j ¡ .n0 ¡ 1/]: (6)

This boundary condition enforces the anchoring of the “backward end” of the alignment path as shown in
Fig. 1(b).

A local alignment A between the sequences a and b is any restricted global alignment of the subse-
quences Oam0Im and Obn0In, alignment of Oa or Ob with null, or the “null alignment” (i.e., no alignment at all).
The optimal local alignment A¤ is one whose score S D S[A¤] is the highest; the corresponding alignment
path is denoted by R¤. From (4), we have

S[a; bI s; ° ] D max
1·m0·m·M

1·n0·n·N

fSm0;n0Im;n; 0g; (7)

where the entry “0” in (7) selects the null alignment if alignments between all possible subsequences are
below a threshold, e.g., zero. The score S is called the optimal local alignment score, or simply the optimal
score.

Smith and Waterman (1981) developed an ef� cient strategy to compute the optimal score S: First, de� ne
the “restricted” local alignment score Hm;n to be

Hm;n D max
1·m0·m

1·n0·n

fSm0;n0Im;n; 0g: (8)

2In the problem considered originally by Smith and Waterman (1981), each run of gaps had to terminate with a
pairing; this corresponds to the limit ±0 D 1 in our scoring system. For a discussion of the generalized gap functions,
see Altschul (1998).
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It records the optimal local alignment between the subsequences Oa1Im and Ob1In. The H ’s can again be
computed by dynamic programming. For the simple linear gap function, it reads

Hm;n D max
»

Hm¡1;n¡1 C s.am; bn/

Hm¡1;n ¡ "; Hm;n¡1 ¡ "; 0

¼
; (9)

with the boundary condition H0;n D 0 D Hm;0. The af� ne gap version of the algorithm is provided in
Appendix A. Given Hm;n for all 1 · m · M , 1 · n · N , the optimal alignment score S de� ned in (7) is
obtained simply as

S[a; bI s; ° ] D max
1·m·M
1·n·N

fHm;ng: (10)

The combination of Equations (9) and (10) is the celebrated Smith–Waterman local alignment algorithm.

2.2. Alignment score statistics

It is important to realize that the value of the optimal score S does not in itself convey any meaning
regarding the degree of homology between the sequences being aligned. One way to assess sequence
homology is to compare the score S with the optimal score of aligning sequences from a null model. A
frequently used null model is that of the mutually uncorrelated Markov random chains, described by the
distribution function

P0[a; b] D
Y

1·m·M
1·n·N

p.am/ ¢ p.bn/; (11)

where p.a/ is the background frequency for the element a, with
P

a2Â p.a/ D 1. The probability distri-
bution function (pdf) of optimal scores for the alignment of random sequences is

pdf.S/ D h±.S ¡ S[aI bI s; ° ]/i0; (12)

where h: : :i0 denotes average over the null sequence distribution (11). The pdf (12) provides the p-value,
that an alignment of two uncorrelated random sequences receives, an optimal score S. It is the “holy-grail”
of statistical studies of sequence alignment.

2.2.1. Gapless alignment. Clearly, the pdf (12) would depend generally on the sequence lengths M ,
N and the scoring functions s and ° . For gapless alignment, the form of the distribution function is known
exactly (Arratia et al., 1988; Karlin and Altschul, 1990, 1993; Karlin and Dembo, 1992) in the asymptotic
limit M , N À 1. For all scoring systems satisfying the condition

X

a;b2Â

p.a/p.b/s.a; b/ < 0 (13)

which includes all the PAM and BLOSUM matrices, the pdf reaches the universal form

D.S/ D KMN¸ exp[¡¸S ¡ KMNe¡¸S]; (14)

known as the Gumbel distribution (Gumbel, 1958). This distribution is speci� ed completely by the two
parameters ¸ and K , with a mean hSi0 ´ S0 » ¸¡1 ln KMN and an exponential tail

D.S À S0/ D ¸KMNe¡¸S; (15)

characterized by the parameter ¸.
The theory of Karlin and Altschul provides explicit formulae for these parameters in terms of the scoring

function s. For example, ¸ can be found as the unique positive root of the equation

X

a;b2Â

p.a/p.b/e¸s.a;b/ D 1: (16)
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A more complicated expression exists for the calculation of K , which we will not describe here. We
mention instead another important characteristic of the background statistics, which we will make use of
later in the text. It is the average pairwise score of the optimal alignment of random sequences,

® D
X

a;b2Â

s.a; b/p.a/p.b/e¸s.a;b/: (17)

This quantity, known as the “relative entropy,” is needed in the calculation of K . It also governs the
magnitude of the “� nite-size” correction of ¸ and K from their asymptotic values; see below.

2.2.2. Gapped alignment. Compared to gapless alignment, the statistics of gapped alignment for the
null model (11) is much more dif� cult to characterize. First of all, the average optimal score S0 does not
always have the logarithmic dependence on sequence lengths. For suf� ciently small gap cost, the mean
score in fact acquires a linear dependence on sequence length even if the condition (13) is satis� ed, i.e.,
S0 D v ¢ N (for sequences of lengths M ¼ N À 1), with the proportionality factor v ¸ 0 depending
on the substitution scores and gap cost. The critical line v D 0 de� nes the loci of phase transition
points (Waterman et al., 1987; Arratia and Waterman, 1994; Bundschuh and Hwa, 1999) separating the
“linear” and “logarithmic” regimes of S0. Various statistical properties in the vicinity of this log-linear
phase transition have been characterized in several recent studies (Hwa and Lassig, 1998; Drasdo et al.,
1998). Also, ample empirical evidences (Smith et al., 1985; Collins et al., 1988; Mott, 1992; Waterman
and Vingron, 1994a, 1994b; Altschul and Gish, 1996; Olsen et al., 1999) suggest that the optimal score
S of gapped alignment again obeys the Gumbel distribution (14) in the logarithmic phase. However, the
functional dependence of the Gumbel parameters ¸ and K on the scoring functions are not known.

Recently, an ef� cient numerical method was developed by Olsen et al. (1999) to characterize the tail
of the Gumbel distribution, without doing exhaustive simulation, such as shuf� ing. The method utilizes
intermediate computational results, e.g., the restricted local alignment score Hm;n, also known as the “score
landscape”; see Appendix B for details. The landscape consist of a collection of positive scoring “islands,”
e.g., clusters of positive H ’s, separated by a “sea” at H D 0. The peak scores of the islands are found
to follow Poisson-like statistics, i.e., having an exponential tail for large scores. From this, the Gumbel
distribution of the optimal score S can be derived. In particular, the Gumbel parameters ¸ and K can be
obtained directly from the island statistics.

The study on island statistics (as reviewed in Appendix B) indicates clearly that the key to understanding
the Gumbel distribution is to characterize the probability tail of obtaining a single large island, the statistics
of which can be more conveniently studied in the context of global alignment. Using the saddle point
method, we give (in Appendix C) a heuristic derivation of the (Poisson-like) distribution of the large island
scores. The results led to the Gumbel distribution for the optimal scores, as well as the all-important
Gumbel parameter ¸, in terms of the solution of the equation

Ä.¸/ ´ lim
N!1

he¸h.N/i0 D 1; (18)

where h.N/ D max1·j·N fS1;1Ij;N ; S1;1IN;j g, in the logarithmic phase where hS1;1IN;N i0 < 0 for large N .
The function Ä.¸/ contains a great deal of information and is dif� cult to compute in general. Only

recently has it been computed (Bundschuh, 1999) for a special choice of scoring functions,3 with

s.a; b/ D
»

1 if a D b

¡2² if a 6D b

and linear gap cost (± D ", ±0 D 0), under the (weak) approximation that the scores s.ai; bj / are uncorrelated
for different i’s or j ’s. The result ¸."/ obtained in this case is in excellent agreement with extensive
numerical simulation (Bundschuh, 1999) and demonstrates the validity of Equation (18). However, the

3This choice of scoring functions corresponds to the problem of the Longest Common Subsequences (Chavtal &
Sankoff, 1975).
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computation of Ä.¸/ for arbitrary scoring functions remains unsolved. Along the practical side, Mott and
Tribe (1999) produced an empirical formula for ¸ that works reasonably well in the large gap-cost regime.
Siegmund and Yakir (2000) studied a similar limit where the maximum number of gaps is � nite. Despite
all of these studies, the current understanding of the statistics of gapped alignment remains very limited.

3. PROBABILISTIC ALIGNMENT AND STATISTICS

The Smith–Waterman algorithm (9,10) is an example of an algorithm which looks for the optimal
solution to a combinatorial problem, the solution being in this case the optimal alignment A¤ and the
optimal score S. An alternative approach to solving combinatorial problems such as sequence alignment is
to look for a class of probable solutions. This approach has been taken in a number of previous studies of
global alignment, e.g., the maximum-likelihood method (Thorne et al., 1991, 1992), the � nite-temperature
method (Zhang and Marr, 1995; Kschischo and Lassig, 1999), and the hidden Markov model (Holmes and
Durbin, 1998). The probabilistic approach has also been used in Smith–Waterman type local alignment: In
the HMM approach as implemented in the “Sequence Alignment and Modeling” software suite (Hughey
and Krogh, 1996), local alignment is accomplished by embedding probabilistic global alignment in between
“free insertion modules,” which allows a part of a sequence to � t to the HMM. In a different approach
(Bucher and Hofmann, 1996), probabilistic Smith–Waterman is realized by normalizing the probabilistic
version of global alignment against a reference with substitution weights all set to 1.

The advantage of the probabilistic approach lies in the simple interpretation of the alignment parameters
and results. For example, the abstract gap cost becomes a gap insertion probability, and the optimal
alignment score between two sequences becomes the overall log-likelihood of the evolutionary relation
between the two sequences once the alignment weights are properly normalized; see below. However,
the probabilistic approach also bears distinct disadvantages. Aside from a modest computational speed
disadvantage, the probabilistic approach suffers from an ill-characterized score statistics—unlike the Smith–
Waterman local alignment, for which at least the form of the optimal score distribution is known for the
null model, very little is known about the distribution of the log-likelihood score of the probabilistic local
alignment of random sequences. Arbitrary use of the z-score has been shown empirically not to produce
very good results (Barret et al., 1997).

In this section, we will provide a brief review of the probabilistic approach to sequence alignment. We
will then present in the next section an alternative “semi-probabilistic” alignment, which combines the
advantages of both the optimizational and probabilistic approach to local alignment.

3.1. Algorithm

We � rst describe the probabilistic approach to restricted global alignment. Each restricted global align-
ment OA of the subsequences Oam0Im and Obn0In is described by an alignment path R as in (1). Let each
pairing (ai ; bj ) contribute a “weight” w.ai ; bj / towards the net weight W of the alignment OA. For the gap
weights, we use

g.`1; `2/ D

8
>><

>>:

1 `1 D 0; `2 D 0
¹ ¢ º`1¡1 `1 ¸ 1; `2 D 0
¹ ¢ º`2¡1 `1 D 0; `2 ¸ 1
¹0 ¢ ¹2 ¢ º`1C`2¡2 `1 ¸ 1; `2 ¸ 1

(19)

where ¹ is the weight of gap initiation, º is the weight of gap extension, and ¹0 is the additional weight
for the double gap con� guration. In all of our numerical work below, we will use ¹0 D 1, which treats each
run of gaps the same way. However, if one wishes to exclude the double-gap con� guration as considered
originally by Smith and Waterman (1981), one can simply set ¹0 to zero.

The net weight W for a given con� guration of pairings R is just the product of the individual weight
factors w’s and g’s, i.e.,

W [RI Oa; ObI w; g] D
lY

kD1

w.amk
; bnk

/ ¢
lY

kD0

g.mkC1 ¡ mk ¡ 1; nkC1 ¡ nk ¡ 1/; (20)
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again with .m0; n0/ D .m0 ¡ 1; n0 ¡ 1/ and .mlC1; nlC1/ D .m C 1; n C 1/. The total weight for the global
alignment is

Wm0;n0Im;n D
X

R .m0;n0Im;n/

W [RI Oa; ObI w; g]; (21)

where
P

R denotes the sum over all allowed paths as de� ned in Section 2. This weight can be computed
exactly by extending the dynamic programming algorithm of Needleman and Wunsch. For the simple
linear gap function .¹ D º; ¹0 D 1/ and without any constraint in the order of occurrence of insertions
and deletions, one can simply iterate the recursion relation

Wm0;n0Ii;j D w.ai ; bj / ¢ Wm0;n0Ii¡1;j¡1 C º ¢ [Wm0;n0Ii¡1;j C Wm0;n0Ii;j¡1] (22)

for i D m0 to m and j D n0 to n, with the boundary conditions

Wm0;n0Ii¸m0¡1;jDn0¡1 D ºi¡.m0¡1/I Wm0;n0IiDm0¡1;j¸n0¡1 D ºj¡.n0¡1/: (23)

Generalization to the af� ne gap function (19) is given in Appendix A.
Next, we introduce the probabilistic version of the restricted local alignment. The total weight of the

restricted local alignment of the sequences Oa1Im and Ob1In is

Zm;n D 1 C
mX

m0D1

ºm0 C
nX

n0D1

ºn0 C
X

1·m0·m

1·n0·n

Wm0;n0Im;n; (24)

where the � rst term on the right-hand side is the weight of null alignment, the second and third term are
the weight of aligning a subsequence of Oam0Im or Obn0In with the null, and the last term gives the weight
of aligning the subsequence Oam0Im with Obn0In , taking the weight of “skipping” the subsequences Oa1Im0¡1

and Ob1In0¡1 to be 1. These skipping factors accomplish exactly the task of the free insertion modules used
in the HMM approach to local alignment (Hughey and Krogh, 1996). Further, using the same weighting
factor of 1 for skipping the subsequences OamC1IM and ObnC1IN , the total weight of the local alignment
between the sequences a and b becomes simply

W[a; bI w; g] D 1 C
X

1·m·M
1·n·N

Zm;n ¡ M ¢ N; (25)

with the last term accounting for the M ¢ N redundant counts of the null alignment included in the second
term. The recursion relation for Zm;n itself is straightforward to derive given (22), (23), and the de� nition
(24). One � nds

Zm;n D 1 C w.am; bn/ ¢ Zm¡1;n¡1 C º ¢ [Zm¡1;n C Zm;n¡1]; (26)

with the boundary condition Z0;n D Zn;0 D 1. Equations (25) and (26) de� ne the algorithm for the
probabilistic version of local alignment.

3.2. Likelihood and hidden Markov model

So far, the alignment weight W , computed according to Equation (20) with arbitrary weight parameters
w and g, does not have any meaningful interpretation. It becomes meaningful, however, if the sum of the
weights going into and out of every node on the alignment lattice are equal on average. For the linear gap
problem (22), this is satis� ed if the weight parameters in the bulk of the alignment lattice are chosen to
obey the condition

hw.a;b/i0 C 2º D 1; (27)
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where h: : :i0 denotes average over the null distribution (11) as before. Our generalization of this formula
to the af� ne-gap function (19) is4

hw.a; b/i0 D
.1 ¡ º/2

.1 C ¹ ¡ º/2 C .¹0 ¡ 1/ ¢ ¹2
I (28)

see Appendix A.2 for details. The above conditions can be satis� ed by choosing the substitution weights
as w.a; b/ D .1 ¡ 2º/T .bja/=p.b/ for the linear gap problem or

w.a; b/ D
.1 ¡ º/2

.1 C ¹ ¡ º/2 C .¹0 ¡ 1/¹2
¢

T .bja/

p.b/
(29)

for the af� ne gap function (19), where T .bja/ gives the transition probability of amino acid b from a, as
what was used to generate Dayhoff ’s PAM substitution matrices (Dayhoff et al., 1978). As is true for any
transition matrices, T has the property

P
b2Â T .bja/ D 1, and hence hT .bja/=p.b/i0 D 1.

Given the local conservation condition (27) or (28), the weight going into and out of any given region
must also be conserved on average. For the example shown in Fig. 1(b), where the total weight going into
the region is 1 [as speci� ed by the boundary condition (23)], the total average weight QWm0;n0Im;n leaving
the region de� ned by the “forward boundaries” at i D m and j D n (the dashed lines in Fig. 1(b)) must
also be 1 on average. This weight is easily computed in terms of the W ’s. For the linear gap function, it
reads

QWm0;n0Im;n ´ [2º C w.am; bn/] ¢ Wm0;n0Im¡1;n¡1 C
m¡1X

iDm0

[º C w.ai ; bn/] ¢ Wm0;n0Ii¡1;n¡1

C
n¡1X

jDn0

[º C w.am; bj /] ¢ Wm0;n0Im¡1;j¡1: (30)

The analogous quantity in the af� ne-gap case is given by Equation (117) in Appendix D. Generally, we
can interpret QWm0;n0Im;n at the total weight that the alignment path starts from the � xed end at .m0; n0/ and
ends anywhere as it intersects the forward boundaries. The local conservation condition assures that

h QWm0;n0Im;ni0 D 1 for all m0 · m and n0 · n: (31)

With the existence of a conservation law for the average weight, one can interpret W [RI a; bI w; g] as
the “likelihood” that the sequence a “evolved” into the sequence b according to some mutation probabilities
speci� ed by w and g. In Appendix D, an example of such an evolution process is given in terms of a
hidden Markov model, which takes a random sequence generated according to the background frequency
p.a/, replaces element a by b according to the transition probability Tc.bja/, and makes insertion/deletions
of segments of lengths `1, `2 with probability gc.`1; `2/ as speci� ed by (19) but with parameters ¹c , ºc ,
¹0

c . We show in Appendix D that the model generates correlated sequences with statistics described by
the joint distribution function

Pc[a; bI wc; gc] D QW [a; bI wc; gc] ¢ P0[a; b]; (32)

with wc.a; b/ D [.1 ¡ ºc/
2=..1 C ¹c ¡ ºc/2 C .¹0

c ¡ 1/¹2
c/] ¢ [Tc.bja/=p.b/]. The weights wc and gc satisfy

the conservation condition (28) for af� ne gap functions, since the transition probability has the property

4Note that in the limit of the linear gap function (¹ D º and ¹0 D 1), Equation (28) becomes hw.a; b/i0 D .1¡º/2

which is different from (27). This occurs because we have excluded, via employing asymmetric recursion relations
(47) and (54), the multitudes of pairing con� gurations involving alternating series of insertions and deletions. The
asymmetry makes no difference in the Viterbi algorithm, but it is necessary in the probabilistic algorithms to avoid
overcounting.
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P
b2Â Tc.bja/ D 1. In the context of the hidden Markov model, we see that the average conservation law

(31) can be viewed simply as the normalization condition on Pc[a, b], i.e.,
P

[a;b] Pc[a; b] D h QW i0 D 1.
The relation (32) will prove to be very useful in the sequel.

3.3. Score statistics

We now turn our attention to the main subject of this study, the statistics of probabilistic alignment, as
described by the distribution of the log-likelihood score (Eddy et al., 1995), e.g., pdf(ln W). This statistics
is not well understood, even in comparison to the not-so-well-understood Smith–Waterman score statistics:
Previously, an exponential bound on the tail of the log-odd score distribution was obtained for a simple
sequence analysis problem (Milosavljevic and Jurka, 1993). Barret et al. (1997) applied this bound to
the HMM version of local alignment and found empirically that it did not correctly account for the false
positives observed. In the mean time, there is a general expectation that the distribution of ln W might still
have a Gumbel form. Here, we would like to point out that there is in fact no a priori reason to expect a
Gumbel distribution for log-odd scores generated by probabilistic algorithms. This is because W, computed
according to Equation (25), is a sum of a large number of correlated terms, while the Gumbel distribution
is typically obtained from taking the maximum of a large number of uncorrelated terms (see Appendix
B.1). In the numerical study described below, we will show that the statistics of ln W is indeed not of the
Gumbel form.

We performed a large number of probabilistic alignments of random sequences using the af� ne gap
weights (19) speci� ed by the two parameters ¹ and º (with ¹0 set to 1). For the substitution weights, we
use Equation (29) with

T .bja/ D T d.bja/ (33)

where T .bja/ is the 20 £ 20 unit PAM transition matrix for 1% mutation (obtained from the NCBI website),
d is the so-called PAM distance, and p.b/ D T d!1.bja/ is the background amino acid distribution used
to generate random sequences. The special choice of substitution weights (29) with (33) satis� es the
conservation condition for the af� ne gap function (28); see Appendix A.2 for details. The actual algorithm
used is given by Equations (54) and (55) of Appendix A, and the total weight W is obtained from
Equation (25).

We tested two sets of scoring parameters described by d D 120, ¹ D 2¡5:5, º D 2¡0:5 and d D 250,
¹ D 2¡6, º D 2¡0:5. For brevity, we shall refer to the � rst set of parameters as “PAM-120” and the second
set as “PM-250” scoring functions. Figs. 2(a) and (b) show respectively the distribution of ln W for the

FIG. 2. Pdf’s of ln W for full-probabilistic alignment. The pdf’s of ln W for the two parameter sets, (a) PAM-120
and (b) PAM-250, are chosen to satisfy the average probability conservation condition (28). Each pdf (shown as a
staircase) is obtained by normalizing the histogram (collected for 125,000 pairwise alignments of random sequences
of length 300). The Gaussian � ts are shown by open circles while the Gumbel � ts are shown by star symbols.
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FIG. 3. Pdf’s for the Viterbi score ln Wvtb. The pdf’s for the Viterbi score ln Wvtb for the two parameter sets, (a)
PAM-120 and (b) PAM-250, are chosen to satisfy the conservation condition (28). Each pdf (drawn as staircase) is
obtained from normalizing the histogram of 25,000 pairwise alignments of random sequences of length 300. The lines
are least-square � ts to the Gumbel distribution.

PAM-120 and PAM-250 scoring functions for 125,000 alignments of Markov sequence pairs of length 300
each. From the � gures, it is clear that the tails of the distribution functions are neither exponential nor
Gaussian. The best least-square � ts to the Gumbel and Gaussian distributions, shown as the dashed line
and long-dashed lines, respectively, are not satisfactory at all.

We then repeated the above alignments using the Viterbi algorithm, which keeps only the alignment
path with the maximum weight W . It is essentially the Smith–Waterman algorithm with af� ne gaps, as
speci� ed in Equation (45) of Appendix A, with the gap costs5 ± D ln ¹, ±0 D 0, and " D ln º. However
the substitution score of the Viterbi algorithm is shifted from the PAM score sd ´ ln[T d.bja/=p.b/] by
an amount

1s.¹; º/ D ln
.1 ¡ º/2

.1 C ¹ ¡ º/2
< 0 (34)

due to the multiplicative term in Equation (29) (with ¹0 D 1). Thus, s.a; b/ D 1s.¹; º/ C sd.a; b/ for the
Viterbi algorithm.

As expected for alignments of the Smith–Waterman type, the pdf’s of the Viterbi score ln Wvtb are
well described by the Gumbel distribution (14); see Figs. 3(a) and (b). The values of ¸ as obtained from
the least-square � t6 are shown in Fig. 4(a) for various sequence lengths N . The ¸’s have signi� cant
sequence length dependence; also, their asymptotic values are different for the different scoring systems
used. For comparison, we plot in Fig. 4(b) the ¸’s obtained from the straight Smith–Waterman alignment
with 1s D 0. Strong length and scoring function dependences are found for this case also, as expected.
There is an overall increase in ¸ (see Figs. 3(a) and (b)) when going from Smith–Waterman to the Viterbi
alignment. This results from the negative shift 1s , which pushes the Viterbi further away from the log-
linear phase transition line of this system. However, as already stated in Section 2, there is so far no
detailed understanding of these parameter dependences for alignments of the Smith–Waterman type.

5On the scale of the PAM scoring system used by BLAST, where the substitution scores are de� ned as sd .a; b/ D
2 ¢ log2[T d .bja/=p.b/] for PAM-120 and sd .a; b/ D 3 ¢ log2[T d .bja/=p.b/] for PAM-250, our values of ¹ and º

translate to gap costs of ± D 11, " D 1, for the PAM-120 scoring system and ± D 18, " D 1:5, for the PAM-250
scoring system.

6The statistical error of ¸ was estimated in the following way: For a given sequence length, we ran 125,000 pair-wise
alignments of random sequences. We then divide the data into � ve sets of 25,000 alignments each and � t each set to
the Gumbel distribution to obtain � ve ¸ values. We then take twice the maximum difference between these ¸’s as the
size of the error bar.
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FIG. 4. The Gumble parameter ¸ versus system size. The ¸ values at different sequence-pair lengths are shown for
the two parameter sets, PAM-120 and PAM-250, for (a) the Viterbi version of the probabilistic alignment and (b) the
Smith–Waterman alignment without the shift (34) to the PAM substitution scores. It is evident that the values of ¸

depend on the scoring functions and sequence lengths in nontrivial ways.

4. SEMI-PROBABILISTIC LOCAL ALIGNMENT

In this section, we present a slight modi� cation of the probabilistic local alignment, at no extra cost
to computational complexity compared to the fully probabilistic version discussed in Section 3. This
modi� cation will allow us to develop a theory for the score statistics of the resulting alignments.

We will take the total weight Zm;n for the restricted local alignment as de� ned in Equation (24) and
computed according to the recursion relation (26) for linear gap function or according to (54) and (55)
for the af� ne gap function. However, instead of obtaining the total weight W for the probabilistic local
alignment by summing over all the Z’s as in (25), we follow the optimizational approach (10) and construct
the maximum log-likelihood (MLL) score

8[a; bI w; g] D max
1·m·M
1·n·N

fln Zm;ng: (35)

The MLL score is manifestly a hybrid of both the probabilistic and optimizational approaches to local
alignment. We refer to alignment based on the MLL score as “semi-probabilistic alignment” and refer to
this algorithm as the “hybrid algorithm.”

As we will see, the advantage of the hybrid algorithm is that the MLL score statistics can be much
better characterized than both the log-likelihood score ln W of the probabilistic approach and the optimal
score S of the optimizational approach, without sacri� cing the sensitivity of the alignment. Just as for the
statistics of Smith–Waterman alignment discussed in Section 2, the statistics of the MLL score can be
characterized by studying the corresponding global alignment problem de� ned by (22) or its af� ne gap
version (47). In particular, the statistical properties of the log-likelihood score ln Wm0;n0Im;n for probabilistic
global alignment is very much analogous to the properties of the optimal global alignment score Sm0;n0Im;n.
Repeating the considerations based on islands and score pro� les (Appendix B) and the saddle point
calculation (Appendix C) for probabilistic global alignment, we again � nd Poisson-like statistics for the
islands, implying the Gumbel distribution for the MLL score. The corresponding Gumbel parameter ¸ can
again be obtained by solving an equation similar to (18) with h.N/ D ln QW1;1IN;N , e.g.,

lim
N!1

h[ QW1;1IN;N .w; g/]¸i0 D 1 (36)

with ¸ > 0. A simple expression is also available for the relative entropy,

® D lim
N!1

N¡1hln QW.w;g/ ¢ [ QW.w; g/]¸i0: (37)
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FIG. 5. Pdf’s for the semi-probabilistic alignment of random sequences. The pdf’s are obtained by normalizing
histograms of 50,000 pairs of random sequences of length 300 each, using the two parameter sets, (a) PAM-120 and
(b) PAM-250, chosen to satisfy the conservation condition (28).

4.1. The magic ¸

Equation (36) is dif� cult to solve in general, just like its Smith–Waterman counterpart (18). However,
for semi-probabilistic alignment, there does exist a special solution of (36) which we will exploit here. We
note that for the special value of ¸ D 1, the condition (36) reduces to h QW i0 D 1. But the latter condition is
just (31), which we already found to hold if the individual weight parameters satisfy the average probability
conservation condition, e.g., Eq. (27) for linear gaps or (28) for af� ne gaps. Since equations of the form
(36) admit only one positive solution of ¸, we expect that as long as one chooses weight parameters
respecting the conservation condition, then the MLL score of the semi-probabilistic alignment will always
have Gumbel statistics with ¸ D 1, in the asymptotic limit of long sequence lengths M , N À 1. This is a
very powerful result, analogous to Equation (16) of gapless alignment, which � xes ¸ D 1 for any choice
of log-odd substitution score s.a; b/.

We next examine numerically the validity of the prediction that a) the MLL score of the hybrid algorithm
obeys Gumbel statistics and b) ¸ D 1 for weight parameters satisfying the conservation condition. We again
use the two sets of scoring systems PAM-120 and PAM-250 which satisfy the conservation condition (28)
for af� ne gaps. We use the af� ne gap algorithm (54) and (55) described in Appendix A and calculate the
MLL score using (35). Figures 5(a) and (b) show the pdf’s of 8 obtained from the alignment of 50,000
pairs of random sequences of lengths 300 each, generated according to the null model (11). We see that
the pdf’s are well � tted by the Gumbel distribution (14). This should be compared to the fully probabilistic
alignment, whose score ln W exhibits anomalous statistics as shown in Fig. 2.

We plotted in Fig. 6(a) the ¸ values obtained from � tting the pdf’s for sequences of different lengths
N to the Gumbel form (14). (For the sake of completeness, we also included in Fig. 6(b) the values of
the other Gumbel parameter K obtained from the same � t. We shall, however, be focused mostly on ¸

in the following.) Unlike the Viterbi case described earlier, where the ¸’s for the PAM-120 and PAM-250
scoring systems approach different values upon increasing N as shown in Fig. 4(a), here we see clearly a
tendency for the ¸’s of both systems to converge towards a common value close to 1, as expected from the
above theoretical considerations.7 However, the rates of convergence to the asymptotic values are different
for the two scoring systems. In order to test more quantitatively our prediction that the asymptotic value
is indeed ¸ D 1, it is necessary to characterize precisely the � nite-size correction to ¸.

7We have independently veri� ed that, away from the probability conservation condition (28), the pdf of 8 is still
of the Gumbel form, but the asymptotic values of ¸ can deviate signi� cantly from 1.
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FIG. 6. Gumbel parameters versus system size for semi-probabilistic alignments. The values of (a) ¸ and (b) K

are obatined from least-square � ts of pdf’s, such as those in Fig. 5 to the Gumbel form (14), for different sequence
lengths. The circles and squares correspond to the PAM-120 and PAM-250 scoring systems, respectively, chosen to
satisfy the conservation condition (28).

4.2. The � nite-size correction

It was pointed out by Altschul (1991) in the context of gapless local alignment and more recently by
Altschul and Gish (1996) for gapped alignment that in using the Gumbel distribution (14) for � nite length
sequences, one should “correct” the lengths M and N which appear in (14) by a score-dependent amount
L(S) and use instead the effective sequence lengths M 0 D M ¡L.S/ and N 0 D N ¡L.S/. The origin of the
correction term is easy to see from the score landscape picture described in Appendix B: It results from the
fact that the available area on the alignment lattice to launch an island is reduced by the size of the island
itself. As an extreme example, one notes that to have an island of the size of the entire alignment lattice
the island must be launched near the tip of the lattice; in this case, the correction term L(S) is nearly the
size of the lattice. Generally, one should take L(S) to be the average island length8 `.S/ corresponding to
the score of the maximum island peak S; see Appendix C. Including this correction, the Gumbel statistics
becomes

Pr.S < x/ D exp[¡K ¢ .N ¡ `.x//2e¡¸x ]; (38)

where we have used the more convenient accumulated distribution and have taken the two sequences to
be of equal length N for simplicity. Using the linear island pro� le `.x/ D ®¡1x for large islands where
® is the “relative entropy,” Altschul et al. (2000) noted that the terms in Equation (38) can be rearranged
into the classic Gumbel form, i.e.,

Pr.S < x/ D exp[¡K.N/ ¢ N 2e¡¸.N /¢x ]; (39)

with the effective size-dependent parameters ¸.N/ D ¸C 2=.®N/ to leading order in 1=N . More generally,
one has the relation

¸.N/ D ¸ C 2=¾ .N/; (40)

where ¾.`/ is the inverse of the function `.¾/ and gives the average score for islands of length `. Note
that � nite-size correction formulae such as (40) are applicable as long as the number of islands in the
alignment lattice is large. They should, however, not be applied to very small N ’s where the sequence
lengths are of the same order as the island sizes and the Gumbel distribution itself breaks down.

8The island width is typically much smaller than its length and hence does not contribute to leading orders.
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4.2.1. The relative entropy. To utilize the � nite-size correction formulae, we need to obtain the relative
entropy ®, and also, more generally, the subleading terms. Direct measurement of ®, however, is time
consuming even by the island method because the occurrences of large islands are rare. However, great
simpli� cation takes place at the magic ¸ value, and the expression (37) for ® can be evaluated directly for
arbitrary scoring parameters satisfying the conservation condition (28).

By Equation (32), the right-hand side of (37) can be related to the correlated ensemble Pc , i.e.,

® D lim
N!1

N¡1
X

[a;b]

ln QW1;1IN;N [a; bI w; g]Pc[a; bI w; g]: (41)

This equation suggests a very simple recipe for the computation of ®: First, generate the correlated
sequences a and b using the evolution model in Appendix D, taking the transition probability to be
Tc.bja/ D T d.bja/, and indel probabilities as described by ¹c D ¹, ºc D º , and ¹0

c D ¹0. Then, apply the
probabilistic global alignment (47) to these correlated sequences using the same scoring parameters and
compute QW for this sequence pair using Equation (117). Quantity ® is readily obtained by averaging over
the ensemble of correlated sequences generated according to this procedure.

This approach can be extended also to the computation of other quantities. We note that Equation (41)
relates ®, which is a property of the rare large islands, to the average property of the corresponding quantity
in the correlated ensemble Pc . In other words, typical sequences generated according to Pc mimic those rare
subsequences of the random sequence ensemble that gives rise to the large islands. This correspondence
can therefore be exploited to measure other properties of the large islands. For example, the average island
peak score ¾.N/ can be obtained as

¾ .N/ D hln QW1;1IN;N ic (42)

where h: : :ic refers to the average over the “correlated ensemble” weighted by Pc. In this way, Equation (41)
becomes merely ® D limN!1 ¾ .N/=N , which is the de� nition of the relative entropy.

We measured ¾.N/ using the correlated ensemble as described above. The result corresponding to the
PAM-120 and PAM-250 scoring systems are shown in Fig. 7. They are well � tted by the form ¾ D ®N Cc,
with statistical uncertainties in ® and c well under 1%. The most striking thing about this result is that
the data points in Fig. 7 were averaged over only 15 pairs of alignments and took practically no time to
generate, while determining ® to such precision using direct simulation or island counting will take weeks
on the same computer.

FIG. 7. Fast assessment of relative entropy. The circles and squares represent the alignment score of correlated
sequences averaged over only 15 pairwise alignments corresponding to the PAM-120 and PAM-250 scoring systems,
respectively. The lines represent the respective least-square � ts to ¾ .N/ D ®N C c. The � ts, which are excellent down
to N D 50, give ® D 0:0554 and c D 4:85 for PAM-250 and give ® D 0:2144 and c D 5:22 for PAM-120.
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FIG. 8. Finite size dependence of Gumbel parameter ¸. Direct comparisons of the numerical values of ¸ as shown
in Fig. 6(a) and the theoretical prediction for (a) PAM-120 and (b) PAM-250 scoring systems.

4.2.2. Direct comparisons. With the accurate determination of ¾ .N/, we are now in a position to test
the � nite-size prediction (40), and with it, the prediction of the asymptotic result ¸ D 1. The predicted
expression of ¸.N/ using the numerically obtained ¾ .N/’s in Equation (40) is plotted as the line in
Figs. 8(a) and (b) for the PAM-120 and PAM-250 scoring systems respectively. Also plotted are the data
points shown already in Fig. 6(a). We � nd very good agreement between theory and measurements down
to sequence length of N D 75 for PAM-120 and N D 150 for PAM-250. (For smaller N ’s, the pdf’s are
no longer well described by the Gumbel distribution for reasons explained earlier.) The striking agreement
found lends strong support to the theory presented.

It is also possible to extend the � nite-size analysis discussed above for the parameter K . Using the
form `.x/ D ®x C c in Equation (38) and rearranging terms into the Gumbel form Equation (39), we � nd
the result

K.N/ D K ¢
±
1 C

c

®N

²2
(43)

which is analogous to Equation (40) for ¸.N/. Unlike the case for ¸, we have not yet developed a theory
to compute the asymptotic value of K. It is, however, still possible to check the form of the � nite-

FIG. 9. Finite size dependence of Gumbel parameter K.N/. For (a) PAM-120 and (b) PAM-250 scoring systems,
the horizontal lines indicate the values of the asymptotic K’s obtained from data at larger N ’s (not shown).
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size correction formula (43) using the numerically obtained values of K.N/ shown in Fig. 6(b). To do
so, we simply divide the vertical axis of Fig. 6(b) by the factor .1 C c=.®N//2, using the values of c

and ® determined from Fig. 7 for the corresponding scoring system. According to Equation (43), this
simple transformation should render the data points N -independent and give the value of the asymptotic
K . We applied this transformation to K.N/ separately for the PAM-120 and PAM-250 scoring systems;
see Figs. 9(a) and (b). Other than the smallest size of N D 75, the data points are approximately9 N -
independent, hovering around the asymptotic values indicated by the horizontal lines. The results suggest
that Equation (43) does capture the correct � nite-size effect. Consequently, it is only necessary to determine
K.N/ for one sequence length, say, at N D 300 by an island counting method similar to Olsen et al.
(1999), or at N ! 1 if the present theory can be extended to compute K . From this, the value of effective
K for all other N ’s can be deduced from the � nite size formula (43).

5. HOMOLOGY DETECTION

Characterization of the score distribution is only a step towards the � nal goal of sequence alignment:
homology detection. Even though we have shown that the semi-probabilistic alignment of random sequences
yields scores obeying a well-characterized distribution at the probability conservation condition, the result
will not be of much use in practice if it gives low scores to homologous sequences, i.e., if it has low
sensitivity. In this section, we examine the sensitivity of homology detection by the semi-probabilistic
alignment and compare it to the usual Smith–Waterman alignment and the Viterbi version of the full-
probabilistic alignment at the probability conservation condition. As mentioned already, the Viterbi and
Smith–Waterman differ only by a shift 1s.¹; º/ in the substitution scores used; see Equation (34). We
will not include the full probabilistic alignment itself in our comparison because its statistics is not well
understood (even numerically). Furthermore, since the tail of the pdf for ln W is broader than the exponential
(see Fig. 2), we expect that it will give a larger p-value (and hence a smaller signi� cance) than the Viterbi
for the high-scoring alignments.

Ideally, we want to perform the detection comparison by using related biological sequences, e.g., those
from the database SwissProt. As a � rst step, we will use correlated sequences generated from the toy
evolution model described in Appendix D. These should be suf� cient for our purpose of evaluating quali-
tatively whether the semi-probabilistic alignment might suffer a substantial loss in sensitivity compared to
the standard methods.

We generated correlated sequences according to the model of Appendix D, using substitution probabilities
given by T dc.bja/ and indel probabilities given by ¹c , ºc , and ¹0

c D 1. Two sets of 1,500 correlated
sequence pairs of lengths 300 were generated, corresponding to the mutation parameters ¹c D 2¡6,
ºc D 2¡0:5, dc D 250, and ¹c D 2¡5:5, ºc D 2¡0:5, dc D 120. Each of these correlated sequence pairs
is then aligned using the hybrid, Smith–Waterman, and Viterbi algorithms, each for a set of a dozen
or so scoring parameters characterized by different PAM distance d’s and initiation costs (± for Smith–
Waterman, or ¹ for the hybrid or Viterbi algorithms). From these alignments, we obtain the average
correlated score Sc for each of the scoring parameter settings. Next, we align 35,000 pairs of random
sequences to determine the Gumbel parameters ¸ and K for each of the dozen or so scoring parameter
settings used. The signi� cance

P
of an alignment is then determined by integrating the tail of the Gumbel

distribution (15) to the score Sc . In “bits”, it is, i.e.,

X
´ ¡ log2.KN2e¡¸Sc /: (44)

In Fig. 10, we plot the signi� cance
P

obtained from the different scoring parameters for correlated
sequences generated with ¹c D 2¡5:5, ºc D 2¡0:5, dc D 120. Fig. 10(a) shows the dependence on the
gap initiation parameter ¹ for the probabilistic (or ± D 2 log2 ¹ for Smith–Waterman) methods, with PAM
distance � xed at d D dc D 120 and gap extension parameter � xed at º D 20:5 (or ² D 2 log2 º for

9The statistical uncertainties associated with the K.N/’s are much larger because the actual parameter used in the
Gumbel � t was K.N/N2.
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FIG. 10. Comparison of signi� cance estimate of the hybrid algorithm (circles), the Smith–Waterman algorithm
(diamonds), and the Viterbi version of the full-probabilistic method (crosses). The signi� cance

P
is derived from

Eq. (44), using the average score obtained from 1,500 correlated sequence pairs as Sc . The correlated sequences are
generated from the toy model of Appendix D, with mutation parameters ¹c D 2¡5:5, ºc D 2¡0:5, dc D 120. In (a),
the gap extension cost is � xed at º D ºc (or " D 2 log2 ºc for the Smith–Waterman alignment) and the substitution
score is � xed at d D dc , i.e., at PAM-120. In (b), the gap extension cost is still � xed at º D ºc ; the gap initiation cost
is also � xed at ¹ D ¹c (or ± D 2 log2 ¹c for the Smith–Waterman alignment).

Smith–Waterman.) In Fig. 10(b), we instead � x the gap initiation to ¹ D ¹c D 2¡5:5 and vary the PAM
distance d . We see that the performance of the hybrid algorithm is comparable to Smith–Waterman and
is signi� cantly better than Viterbi. The same plots are repeated in Figs. 11(a) and (b) for the sequences
generated with the other set of mutation parameters (¹c D 2¡6, ºc D 2¡0:5, dc D 250). In this case, there
is an overall degradation of the signi� cance compared to the ones shown in Fig. 10, as the mutation is
much stronger than in the case with dc D 120. However, the relative performances of the three methods
remain the same, with the hybrid method being comparable to Smith–Waterman and signi� cantly better
than Viterbi.

FIG. 11. Same comparison as in Fig. 10, except the correlated sequences are generated with the mutation parameters
¹c D 2¡6, ºc D 2¡0:5, dc D 250.
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We should caution that conclusions obtained from this simple sensitivity comparison is based on very
crude homology models. It should not be too surprising that the hybrid method performed well, since it is
the closest to the generative model. Also, we do not expect that Smith–Waterman alignment will always
outperform the Viterbi, even within the class of correlated sequences generated by our mutation model. In
particular, if the degree of homology between the sequence pairs is much higher, then the Viterbi is likely to
outperform Smith–Waterman because its larger ¸ value will make the signi� cance

P
larger. Nevertheless,

we can conclude from this comparison that the hybrid method does not suffer any unexpected generic
problems which would make it signi� cantly less sensitive. Detailed studies on biological sequences are
obviously needed to determine the actual degree of sensitivity of the hybrid method.

6. SUMMARY AND OUTLOOK

In this paper, we studied the extremal statistics of probabilistic sequence alignment both analytically
and numerically. We � nd that while the straightforward probabilistic alignment gives rise to anomalous
score statistics, the slightly modi� ed semi-probabilistic alignment is well described by Gumbel statistics.
For the semi-probabilistic alignment, we can predict the Gumbel parameter ¸, including its � nite size
dependence, for different scoring functions and parameters. Our results are veri� ed numerically by using
various PAM substitution matrices and af� ne gap functions. We further studied the sensitivity of the new
hybrid method by aligning correlated sequences generated from toy mutation models. We � nd the sensitivity
to be comparable to that of the Smith–Waterman alignment and signi� cantly better than the Viterbi version
of probabilistic alignment.

In our study, we have not focused on the behavior of the other Gumbel parameter, K , which is more
dif� cult to compute than ¸ analytically. It should, however, be straightforward to determine K numerically
by extending the island method of Olsen et al. (1999) to the semi-probabilistic alignment. With the help of
precisely determined ¸ and the � nite-size correction formula for K , it is possible to � x the value of K for
all sequence lengths by counting islands from a few pairwise alignments (R. Olsen, private communication,
1999).

Let us close with a general remark: Although we restricted the numerics presented in the present study
to position-independent scoring functions, this is not a prerequisite for the application of our theory. In fact,
we expect that the asymptotic value of ¸ to remain 1 as long as the probability conservation condition, such
as (27) or (28), is locally satis� ed at each node of the alignment lattice. This can be readily accomplished
for position-speci� c substitution and indel weights by generalizing the formula (29). Similarly, our formula
for the relative entropy ® is good also for position-speci� c scores, and the recipe for the calculation of ®

given in Section 4.2.1 remains valid. Thus we expect our method of predicting ¸.N/ to apply generally to
position-speci� c scoring functions. This will be tested by extensive numerical studies and will be reported
elsewhere. If veri� ed, then the hybrid method will be of much use to a variety of maximum-likelihood or
HMM based applications, by providing detailed statistical characterization they currently lack. It should
also be of use to database search tools, such as PSI-BLAST, by allowing for position-speci� c gap functions.
On the short side, the semi-probabilistic approach shares with any other probabilistic approach a problem of
reduced speed due to the � oating-point operations required in its execution. However, the speed reduction is
moderate,10 and we believe it should be outweighed by the overwhelming advantage of a well-characterized
null statistics which is not currently available to most of these methods.
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APPENDIX A: THE AFFINE GAP FUNCTION

A.1. Algorithms

The discussion in the main text is carried on in the context of the linear gap function for simplicity. All
of the numerics performed in this study are done instead with the more useful af� ne gap function, with
the constraint that deletions cannot immediately follow a series of insertions. In this appendix, we will
provide the details of the af� ne gap algorithm used.

We start with the af� ne gap version of the Smith–Waterman local alignment. Consider the af� ne gap
function (2) parameterized by the gap opening cost ±, gap extension cost ", and extra double-gap cost
±0. It will be convenient to introduce three auxiliary quantities H S

m;n, H D
m;n, and H I

m;n, which are de� ned
through the recursion relations

H S
m;n D max

»
H S

m¡1;n¡1 C s.am; bn/;

H D
m¡1;n¡1 C s.am; bn/; H I

m¡1;n¡1 C s.am; bn/

¼
;

H D
m;n D maxfH S

m¡1;n ¡ ±; H D
m¡1;n ¡ "g; (45)

H I
m;n D max

»
H S

m;n¡1 ¡ ±; H I
m;n¡1 ¡ "

H D
m;n¡1 ¡ ± ¡ ±0

¼
;

supplemented by the boundary conditions H S
0;n D H D

0;n D H I
0;n D 0 and H S

m;0 D H D
m;0 D H I

m;0 D 0. Then,
Hm;n as de� ned in (8) can be obtained simply as

Hm;n D maxf0; H S
m;n; H D

m;n; H I
m;ng: (46)

The optimal score S is still given in terms of the H ’s according to (10).
Next, we describe the algorithm for probabilistic global alignment with af� ne gap weights of the form

(19). To compute Wm0;n0Im;n as de� ned in (21), we need to introduce the auxiliary quantities W S , W D ,
and W I , which can be computed from the recursion relation

W S
m0;n0Im;n D w.am; bn/ ¢ [W S

m0;n0Im¡1;n¡1 C ¹D
1 ¢ W D

m0;n0Im¡1;n¡1 C ¹I
1 ¢ W I

m0;n0Im¡1;n¡1];

W D
m0;n0Im;n D ¹D

2 W S
m0;n0Im¡1;n C ºW D

m0;n0Im¡1;n; (47)

W I
m0;n0Im;n D ¹I

2W S
m0;n0Im;n¡1 C ºW I

m0;n0Im;n¡1 C ¹I
2¹0¹D

1 W D
m0;n0Im;n¡1;

with m ¸ m0 and n ¸ n0. In (47), the parameters º is the gap extension weight, and ¹0 is the extra
weighting factor associated with the double-gap con� guration. The additional parameters ¹D

1 .¹I
1/ and

¹D
2 .¹I

2/ can be interpreted respectively as the weight of terminating a deletion (insertion) and the weight
of creating a deletion (insertion). Note that for gap weights of the form (19), which only penalize gap
opening and extension (but not speci� cally gap creation and termination), one can choose arbitrary values
of the parameters ¹

D;I
1;2 as long as they satisfy the condition

¹D
1 ¢ ¹D

2 D ¹ D ¹I
1 ¢ ¹I

2; (48)

where ¹ is the gap opening weight. The total weight (22) becomes

Wm0;n0Im;n D W S
m0;n0Im;n C WD

m0;n0Im;n C W I
m0;n0Im;n; (49)
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and the boundary conditions (23) now take on the form

W S
m0;n0ImDm0¡1;n¸n0 D 0 D W S

m0;n0Im¸m0;nDn0¡1;

W D
m0;n0ImDm0¡1;n¸n0¡1 D 0 D W I

m0;n0Im¸m0¡1;nDn0¡1;

W D
m0;n0Im¸m0;nDn0¡1 D ¹D

2 ºm¡m0
; (50)

W I
m0;n0ImDm0¡1;n¸n0 D ¹I

2ºn¡n0
;

W S
m0;n0ImDm0¡1;nDn0¡1 D 1:

Finally, we describe probabilistic local alignment. The generalization of Equation (24) to the af� ne gap
case is

Zm;n D 1 C
m¡1X

m0D0

¹D
2 ºm0 C

n¡1X

n0D0

¹I
2ºn0 C

X

1·m0·m

1·n0·n

Wm0;n0Im;n: (51)

In light of the expression (49) for Wm0;n0Im;n and the recursion relations (47), one can derive analogous
relations for Zm;n in terms of the auxiliary quantities Z

S;D;I
m;n . Let

ZS
m;n D 1 C

X

1·m0·m

1·n0·n

W S
m0;n0Im0n;

ZD
m;n D

X

1·m0·m

1·n0·nC1

W D
m0;n0Im;n; (52)

ZI
m;n D

X

1·m0·mC1
1·n0·n

W I
m0;n0Im;n:

Then these auxiliary quantities can be computed recursively as

ZS
m;n D 1 C w.am; bn/[ZS

m¡1;n¡1 C ¹D
1 ¢ ZD

m¡1;n¡1 C ¹I
1 ¢ ZI

m¡1;n¡1];

ZD
m;n D ¹D

2 ZS
m¡1;n C ºZD

m¡1;n; (53)

ZI
m;n D ¹I

2ZS
m;n¡1 C ºZI

m;n¡1 C ¹I
2¹0¹D

1 ZD
m;n¡1

and Zm;n is obtained as

Zm;n D ZS
m;n C ZD

m;n C ZI
m;n: (54)

From m;n, the total weight W of the probabilistic local alignment is obtained according to (25), and the
Maximum Log-Likelihood score of the semi-probabilistic local alignment is obtained according to (35).

A.2. Conservation conditions

As described in Section 3, the alignment weight W can be interpreted as “likelihood” if the local weight
parameters satisfy the condition that the total weights going in and out of each node is equal on average.
For the probabilistic af� ne gap problem (47) and (49), this condition can be easily satis� ed by exploiting
the freedom (48) in choosing the weight parameters ¹

D;I
1;2 . They lead to the following additional constraints

on these weight parameters:

hw.a; b/i0 C ¹D
2 C ¹I

2 D 1;

¹I
1hw.a;b/i0 C º D 1; (55)

¹D
1 hw.a; b/i0 C º C ¹I

2¹0¹D
1 D 1:
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These constraints, together with (48), uniquely determine all of these ¹1;2’s, as well as a constraint relating
hwi0, ¹, º and ¹0. The result is:

¹D
1 D ¹=¹D

2 D [.1 C ¹ ¡ º/2 C .¹0 ¡ 1/¹2]=.1 C ¹0¹ ¡ º/;

¹I
1 D ¹=¹I

2 D [.1 C ¹ ¡ º/2 C .¹0 ¡ 1/¹2]=.1 ¡ º/; (56)

and

hw.a; b/i0 D
.1 ¡ º/2

.1 C ¹ ¡ º/2 C .¹0 ¡ 1/¹2 : (57)

Equation (57) is the only condition that the real weight parameters w.a; b/, ¹, º, and ¹0 have to satisfy.
For position-speci� c scoring systems, this condition needs to be satis� ed at each node of the alignment
lattice.

APPENDIX B: SCORE ISLANDS AND THE GUMBEL DISTRIBUTION

B.1. Gapless local alignment

In this appendix, we review the concepts of “score landscape” and “islands” which are central to our
theoretical analysis. We start by examining gapless local alignment, for which the recursion relation (9)
simpli� es to

Hm;n D maxfHm¡1;n¡1 C s.am; bn/; 0g: (58)

We are interested in the statistics of the optimal score

S D max
1·m·M
1·n·N

fHm;ng (59)

for random sequences a and b described by the distribution p.a/. Because the sequences being aligned
are random, we can take m D n in (58) without loss of generality. Equation (58) then becomes a discrete
Langevin equation with

Hn;n ´ H.n/ D maxfH .n ¡ 1/ C ´.n/;0g; (60)

where the “noise” ´.n/ ´ san;bn
is uncorrelated and given by the distribution

½0.´/ D
X

a;b2Â

±.´ ¡ s.a; b//p.a/p.b/: (61)

Due to the construction of the scoring system s.a; b/, it turns out that the average value of ´ is negative,
i.e., X

a;b

s.a; b/p.a/p.b/ < 0: (62)

The “dynamics” of the evolution equation (60) are, qualitatively, as follows: The score H .n/ starts at
zero. If the next local score ´.nC1/ is negative—which is the more typical case due to the Equation (62)—
then H remains zero. But if the next local score is positive, then H will increase by that amount. Once
it is positive, H.n/ performs a “random walk” with independent increments ´.n/. Due to the condition
in (62), there is a negative drift which forces H .n/ to eventually return to zero. After it is reset to zero,
the whole process starts over again. The qualitative “temporal” behavior of the score H .n/ is depicted in
Fig. 12.

From the � gure, it is clear that the “score landscape” can be divided into a series of islands of positive
scores separated by “seas” de� ned by H D 0. Each such island originates from a single jump out of
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FIG. 12. Sketch of the total score as a function of sequence position in gapless local alignment.

the zero-score state and terminates when the zero-score state is reached again. Since each of these islands
depends on a different subset of independent random numbers ´.n/, the islands are statistically independent
of each other. The same statistical independence applies to the maxima of different islands. Let the total
number of islands at n D N be ·.N/, and let the maximal score of the ith island be ¾i . The global optimal
score S in (59) can be alternatively written as

S D maxf¾1; ¾2; : : : ; ¾· g: (63)

As will be shown in Appendix C, the island peak score ¾i obeys a Poisson-like distribution for large ¾i’s,
i.e.,

Pr.¾i > x/ D (constant) ¢ e¡¸x for ¾ À ¸¡1: (64)

Then, according to (63),

Pr.S < x/ D
·Y

iD1

[1 ¡ Pr.¾i > x/]
·!1¡¡¡! exp[¡·e¡¸x ]: (65)

The Gumbel distribution shown in Equation (14) is obtained as the derivative of (65).

B.2. Gapped local alignment

Recently, Olsen et al. (1999) generalized the above island picture to gapped local alignment: By con-
struction of the Smith–Waterman algorithm (9) or (45), many points on the alignment lattice have score
H D 0 in the logarithmic regime. As for gapless alignment, a positive score will be generated out of this
“sea” of zeroes if a good match occurs by chance. This positive score can then lead to further positive
scores via the recursion relation (9). To every positive scoring point on the lattice, i.e., for every Hm;n > 0,
we can associate a path R†.m; n/ which is the optimal local alignment path given that its forward end
is � xed at .m; n/. An island is de� ned to be the collection of points .m; n/’s linked together by their
respective optimal paths R†.m; n/. By this de� nition, every lattice point with a positive score belongs to
exactly one island (up to degeneracy of optimal paths which mainly blurs the island boundaries and does
not change the distribution of large islands scores). For details, see Olsen et al. (1999).

Each of the islands has a maximum score which we denote by ¾i as we did in the gapless case. Thus,
the optimal score S is given by (63) again, with the total number of islands · depending on the lattice size
M ¢ N . Since the large islands are well separated by a sea of zero scores, they are statistically independent
objects. Thus, their peak scores ¾i are again independent and identically distributed random variables, and
Gumbel statistics can again be recovered via Equation (65) once the distribution of ¾ ’s is speci� ed.

The same island picture applies to the case of semi-probabilistic alignment. The score landscape is now
obtained by replacing Hm;n by ln Zm;n, where Zm;n is computed according to the recursion relation (26).
In the logarithmic regime, where the corresponding probabilistic global alignment (22) has exponentially
small weights, e.g.,

lim
N!1

1
N

hln W1;1IN;N i0 < 0;
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the majority of lattice points have ln Z D 0C. In contrast to Smith–Waterman local alignment, the proba-
bilistic algorithm generates a sea with small “ripples” slightly above zero. This makes the boundaries of the
individual islands somewhat fuzzy. It does not, however, affect the assignment of large islands. It is again
straightforward to identify the peak island score .ln Z/ for each island (R. Olsen, private communication).
We denote them by ¾i , and the MLL score, as de� ned in (35), is again of the form (63). Since the large
islands are still widely separated by the sea of zeroes, the ¾ ’s are again uncorrelated. Thus, the distribution
of the MLL score 8 is again given by the distribution of the island peak score.

APPENDIX C: STATISTICS OF LARGE ISLANDS

In this appendix, we give a heuristic derivation of the probability distribution of the maximum island
score ¾ used in Appendix B. To explain our approach, we shall � rst rederive the exact results of Karlin
and Altschul (1990) for gapless alignment in a heuristic manner, by making some reasonable assumptions
which dramatically simplify the key calculation. We shall then apply the same assumptions to the gapped
alignment case where no exact results exists. These assumptions will simplify the gapped calculation,
allowing us to derive the form of the Poisson-like distribution of the island score (64) as well as the
condition for the parameter ¸.

C.1. Gapless alignment

In gapless alignment, the score pro� le H .n/ of a single island is

H.n/ D
nX

jD1

´.j/; with H.n/ > 0 for all n ¸ 1; (66)

where ´.j / D 2aj ;bj
is again described by the distribution function ½0 in (62), with j D 1 taken to be the

island initiation position. The peak island score ¾ is

¾ D max
1·n<1

H .n/;

occurring at some position n D ` such that H .`/ D ¾ . Various island statistics can be derived from the
joint probability

Q.¾; `/ D
*

µ

0

@
X̀

jD1

´.j/ ¡ ¾

1

A ¢
Y

n 6D`

µ

0

@¾ ¡
nX

jD1

´.j/

1

A µ

0

@
nX

jD1

´.j /

1

A
+

0

; (67)

where the factors following
Q

n 6D` enforce the condition that H.n/ is bounded between 0 and ¾ , except at
n D ` where H.n/ exceeds ¾ . From Q.¾; `/, the probability distribution function of ¾ is obtained as

pdf.¾ / D
1X

`D1

Q0.¾; `/; (68)

where Q0.¾; `/ ´ @Q=@¾ . The average island length ` is

`.¾/ D
1X

`D1

` ¢ Q0.¾; `/: (69)

What make the calculation of Q.¾; `/ dif� cult are the restriction factors in (68). Motivated by the exact
result (Karlin and Altschul, 1990) that

lim
¾ !1

`.¾ / D ®¡1 ¢ ¾; (70)
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where ® is known as the “relative entropy,” we hypothesize that the removal of the restriction factors in
(68) does not change the leading behavior of the probability distribution function in the limit of large ¾ ,
e.g., ¾ À ¾0, where ¾0 is the typical island score (which will turn out to be of the order ¸¡1). This leads
us to consider the unrestricted probability

QQ.¾ j`/ D
*

µ

0

@¾ ¡
X̀

jD1

´.j/

1

A
+

0

; (71)

where µ.x/ is the Heaviside unit step function with µ.x/ D 1 if x > 0 and with µ.x/ D 0 if x < 0.
Alternatively, one can consider its differentiated form

QQ0.¾ j`/ D
*

±

0

@¾ ¡
X̀

jD1

´.j /

1

A
+

0

; (72)

which describes the probability that the corresponding global alignment score

S.`/ ´ S1;1I`;` D
X̀

jD1

´.j/ (73)

reaches the value ¾ after ` steps. In term of QQ0, our hypothesis can be expressed simply as

lim
¾ À¾0

pdf.¾/ ¼
1X

`D1

QQ0.¾ j`/: (74)

The computation of QQ0 is straightforward. From Equation (72), we have

QQ0.¾ j`/ D
Z

dke¡ik¾ ¢
Ỳ

jD1

Z
d´.j/eik´.j /½0.´j / D

Z
dke¡ik¾ ¢ [ O½0.k/]` (75)

where

O½0.k/ ´
Z

d´½0.´/eik´ D
X

a;b2Â

eiks.a;b/p.a/p.b/ (76)

is the Fourier transform of ½0.´/. Using this expression in (74) and replacing the sum over ` by an integral,
we � nd the following for the pdf of interest:

lim
¾ À¾0

pdf.¾ / ¼
Z 1

1
d`

Z 1

¡1
dke¡ik¾ ¢ [ O½0.k/]`: (77)

It is convenient to change the integration variable ` to u D `=¾ . The double integral (77) can then be
evaluated in the limit of large ¾ by applying the saddle-point method twice. Integration over k yields the
result

QQ0.¾ ju¾ / D e¡ik¤¾ Cu¾ ln O½.k¤/ (78)

together with the saddle-point condition

¡i C u
d

dk
ln O½0.k/

­­­­
kDk¤.u/

D 0 (79)
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which also provides the implicit function k¤.u/. The second integration over u can be evaluated at the
second saddle-point condition:

µ
¡i C u

d

dk
ln O½0.k/

¶

kDk¤

dk¤

du

­­­­
uDu¤

C ln O½0.k¤.u¤// D 0; (80)

which is reduced to

ln O½0.k¤.u¤// D 0; (81)

given the � rst saddle-point (80). Finally, from Equations (78) and (81), we have

lim
¾ À¾0

pdf.¾ / ¼ QQ0.¾ ju¤¾ / ¼ e¡ik¤.u¤/¾ : (82)

The results (82) and (81) can be written in a more familiar form by introducing ¸.u/ ´ ik¤.u/. We then
have

lim
¾ À¾0

pdf.¾ / ¼ e¡¸.u¤/¾ ; (83)

where ¸.u¤/ is given by ln[ O½0.¡i¸.u¤//] D 0. Recalling the de� nition (76), the condition for ¸.u¤/ can
be expressed as

X

a;b2Â

e¸sa;bp.a/p.b/ D 1; (84)

which is the exact result obtained by Karlin and Altschul.
Next, we note that the length scale `¤.¾/ selected by the saddle point approximation is given by

`¤.¾ / D u¤¾ , where u¤ is de� ned by the two saddle-point conditions (79) and (81). Expecting that
`¤.¾ / ¼ `.¾/ in the limit of large ¾ , we have

® D u¤¡1 D ¡i
d O½0

dk

­­­­
k¤.u¤/

; (85)

or more explicitly

® D
X

a;b2Â

s.a; b/e¸s.a;b/p.a/p.b/; (86)

using the de� nition of (76). The expression for the relative entropy given by Karlin and Altschul is
recovered as ¸ ¢ ®.

The above saddle point approximation will be asymptotically exact provided that appropriate conditions
on the second derivative of the exponent of the integrand are satis� ed, i.e., provided that

¾
@2

@.ik/2 [¡iku C u ln O½0.k/]kDk¤.u¤/
¾ !1¡¡¡! ¡1; (87)

¾
@2

@u2
[¡ik C u ln O½0.k/]kDk¤.u¤/

¾ !1¡¡¡! ¡1: (88)

The � rst condition (87) comes with the � rst saddle point equation (79) and the second condition comes
with the second saddle point equation (80). For the � rst condition, u is held as a positive constant and the
condition is satis� ed through the use of the Schwarz inequality

2

4
X

a;b2Â

e¸sa;bp.a/p.b/

3

5 ¢

2

4
X

a;b2Â

s2
a;be¸sa;bp.a/p.b/

3

5 >

2

4
X

a;b2Â

sa;be¸sa;bp.a/p.b/

3

5
2

: (89)
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The second condition, Equation (88), can also be easily veri� ed through differentiating Equation (79) with
respect to u and applying the Schwarz inequality (89).

C.2. Gapped local alignment

The single most important ingredient in the above heuristic approach is the linear dependence of island
score ¾ on island length `. Since this linear relation is again expected in gapped alignment, it is reasonable
to extend the above approach to the gapped case. In particular, we conjecture that the island peak score
distribution, e.g., the gapped analog of Equations (67) and (68), can again be obtained by their unrestricted
counterpart, e.g., the gapped version of Equation (71), which involves only the gapped global alignment
score, S1;1Im;n.

Given an island score pro� le Hm;n for gapped local alignment, there are now two coordinates (e.g., `1

and `2) for the position of the island peak position. (The island initiation position is taken here to be (1,1).)
The peak island score ¾ is now speci� ed by the joint probability

Q.¾; `q ; `2/ D
*

µ.¾ ¡ H`1;`2 /
Y

m 6D`1
n6D`2

µ.Hm;n ¡ ¾ /

+

0

; (90)

whose derivative Q0.¾; `1; `2/ ´ d
d¾

Q.¾; `1; `2/ speci� es the probability distribution

pdf.¾ / D
X

`1;`2

Q0.¾; `1; `2/: (91)

Again, we hypothesize that for large ¾ the inclusion of the restriction factors in (90) are not important.
We � rst remove the lower restriction at score 0 by replacing Hm;n by the global alignment score S1;1Im;n.
Thus we conjecture that

lim
¾ À¾0

Q.¾; `1; `2/ ¼
*

µ.¾ ¡ S1;1I`1;`2 /
Y

m 6D`1
n 6D`2

µ.S1;1Im;n ¡ ¾/

+

0

´ Q1.¾; `1; `2/: (92)

Next, we observe that the upper restriction at score ¾ represented by
Q

m6D`1;n6D`2
in (93) can be compact-

i� ed by � rst considering the auxiliary quantity

QS1;1In;n ´ max
1·j·n

fS1;1Ij;n; S1;1In;j g; (93)

which is the optimal global alignment score for an alignment path with the backward end � xed at (1, 1)
and the other end free to be anywhere along the outer boundary of i D m or j D n. It then follows11 that

X̀

jD1

[Q1.¾; j; `/ C Q1.¾; `; j/] D
*

µ.¾ ¡ QS1;1I`;`/ ¢
Y

n 6D`

µ. QS1;1In;n ¡ ¾/

+

0

´ Q2.¾; `/: (94)

Finally, we relax the upper score restriction and assume that

lim
¾ À¾0

Q2.¾; `/ ¼ hµ.¾ ¡ QS1;1I`;`/i0 ´ QQ.¾ j`/: (95)

11We have not included here the occurrence of rare cases where multiple maxima exist among S1;1Im;` and S1;1I`;n;
in any case, they should not affect the leading behavior of the pdf for large ¾ .
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Combining Equations (91), (92), (94), and (95), we obtain

lim
¾ À¾0

pdf.¾ / ¼
1X

`D1

QQ0.¾ j`/ (96)

with

QQ0.¾ j`/ D h±.¾ ¡ QS1;1I`;`/i0: (97)

Equation (96) is the generalization of the hypothesis (74) to gapped alignment.
The calculation for QQ0 closely follows the gapless case. We have

QQ0.¾ j`/ D
Z

dkeik¾ hexp[ik QS1;1I`;`]i0: (98)

Unlike the gapless case, it is no longer possible to decompose heikSi0 into a product of ` independent
terms. Nevertheless, we expect the result to be of the form

hexp[ik QS1;1I`;`]i0 D [ O½.k/]` (99)

for large `, with a nontrivial function O½.k/. We can now follow exactly the analysis described above for
the gapless case, with the substitution of O½0.k/ by O½.k/. We again � nd a Poisson-like distribution

lim
¾ À¾0

pdf.¾ / » (constant) ¢ e¡¸¾ ;

with the parameter ¸ given by

O½.¡i¸/ D 1 (100)

and the relative entropy

® D ¡i
d

dk
ln O½.k/

­­­­
kD¡i¸

: (101)

With the result (100), Equation (99) becomes

lim
`!1

hexp[¸ ¢ QS1;1I`;`]i0 D 1; (102)

which is the gapped alignment generalization of the Karlin–Altschul solution (84). From (100) and (102),
we also obtain an explicit formula for the relative entropy:

® D lim
`!1

`¡1h QS1;1I`;`e
¸¢ QS1;1I`;`i0: (103)

The above approach generalizes straightforwardly to the semi-probabilistic alignment algorithm presented
in Section 4, with the substitution of QS1;1I`;` by ln QW1;1I`;`.

APPENDIX D: HIDDEN MARKOV MODEL OF SEQUENCE EVOLUTION

In this appendix, we describe a hidden Markov model M which mimics simple evolution processes and
generates pairs of correlated sequences a1;m and b1;n. We will � nd that the joint probability distribution
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FIG. 13. Schematics of the hidden Markov mode M for sequence evolution. The different states are B for the
“begin” state, I for the “insertion” states, D for the “deletion” states, and Si for the substitution of ith element of the
input sequence a. The arrows indicate the allowed transitions between the states, with transition probabilities given
in the text. Sequence elements are “emitted” in the states denoted by circles (I and Si ): An element b is emitted
with probability p.b/ every time the state I is visited and emitted with probability Tc.bjai / every time a state Si is
visited. The evolution process terminates either when the new sequence generated reaches a speci� ed length or the
input sequence is exhausted.

Pc[a; b] speci� ed by M corresponds directly to the alignment weights QW [a; b] described in Sec. 3. This
connection is used in Sec. 4 to compute the relative entropy of the semi-probabilistic alignment.

First a random sequence a1Im (the ancestor sequence) is generated according to the amino acid fre-
quencies12 p.a/ for each element a. Then, one mutates the sequence a according to the mutation model
illustrated schematically in Fig. 13: Starting from the “begin” state B , the model visits a series of “states”
I , D, or Si (respectively the “insertion”, “deletion”, and “substitution” states) sequentially by following
the arrows in a stochastic manner, with probability q.Y jX/ for the transition from state X to Y ,13 with
X; Y 2 fS; D; I g and q.DjI / D 0. The transition probabilities obey the conservation conditions

X

Y

q.Y jX/ D 1 (104)

for each state X. Every time a circled state (I or Si) is visited, a new sequence element b is “emitted”, with
probability p.b/ in state I and probability Tc.bjai/ in state Si . The elements b’s derived from the execution
of the model are labeled in order, as b1, b2, etc. The model stops when the length of the derived sequence
b reaches n, or when all of the elements in a1;m are exhausted. In the latter case, random elements are
generated according to p.b/ and added to the sequence b until it reaches the length n.

Each sequence pair [a, b] generated according to the mutation model M can be described by the set
Rc.1; 1I m; n/ D f.m1; n1/; .m2; n2/; : : : ; .ml; nl/g analogous to the alignment path described in Section
2, with the index pairs .mk; nk/ denoting the substitution of amk

by bnk
. Let the coordinates of the last

substitution event be i D ml · m and j D nl · n. The probability Pc of obtaining a sequence pair
[ Oa1;i; Ob1;j ], with substitutions speci� ed by Rc is

Pc[ Oa1;i ; Ob1;j I Rc] D
lY

kD1

[Tc.bnk
jamk

/p.amk
/]

¢
l¡1Y

kD0

2

4g 0
c.mkC1 D mk D 1; nkC1 ¡ nk ¡ 1/ ¢

mkC1¡1Y

ikDmkC1

p.aik / ¢
nkC1¡1Y

jk DnkC1

p.bjk
/

3

5; (105)

12The frequency p.a/ is chosen as the largest eigenvector (with eigenvalue 1) of the transition matrix Tc.bja/.
13For simplicity, we use here q.Y jB/ D q.Y jS/, although the transition probability for the � rst state can in principle

be different.
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with .m0; n0/ D .0; 0/ and

g0
c.`D; `I / D

8
>>>><

>>>>:

q.SjS/ `D D 0; `I D 0
q.DjS/ ¢ [q.DjD/]`D¡1 ¢ q.SjD/ `D ¸ 1; `I D 0
q.I jS/ ¢ [q.I jI /]`I ¡1 ¢ q.SjI / `D D 0; `I ¸ 1
q.DjS/ ¢ [q.DjD/]`D¡1 ¢ q.I jD/

¢[q.I jI /]`1¡1 ¢ q.SjI / `D ¸ 1; `I ¸ 1:

(106)

The expression g0
c is close to the form of the af� ne gap function (19). Let us express the transition

probabilities in the following way:

q.DjS/ ¢ q.SjD/ D ¹D
c ¢ q.SjS/

q.I jS/ ¢ q.SjI / D ¹I
c ¢ q.SjS/ (107)

q.DjS/ ¢ q.I jD/ ¢ q.SjI / D ¹0
c ¢ ¹D

c ¢ ¹I
c ¢ q.SjS/

and further restrict the parameter space to

¹D
c D ¹c D ¹I

c

q.DjD/ D ºc D q.I jI /: (108)

Then we have g0
c.`D ; `I / D q.SjS/ ¢ gc.`D ; `I /, where

gc.`D; `I / D

8
>><

>>:

1 `D D 0; `I D 0
¹c ¢ º

`D¡1
c `D ¸ 1; `I D 0

¹c ¢ º
`I ¡1
c `D D 0; `I ¸ 1

¹0
c ¢ ¹2

cº
`DC`I ¡2
c `D ¸ 1; `I ¸ 1:

(109)

Equation (109) is of the same form as the af� ne gap weight (19). The transition probabilities can be
expressed in terms of ¹c, ¹0 and ºc using the de� nitions (107) and (108) and the conservation condition
(104). We � nd

q.SjS/ D
.1 ¡ ºc/2

.1 C ¹c ¡ ºc/2 C .¹0
c ¡ 1/¹2

c

;

q.DjS/ D
.1 C ¹0

c¹c ¡ ºc/¹c

.1 C ¹c ¡ ºc/2 C .¹0
c ¡ 1/¹2

c

;

q.I jS/ D
.1 ¡ ºc/¹c

.1 C ¹c ¡ ºc/2 C .¹0
c ¡ 1/¹2

c

; (110)

q.SjD/ D
.1 ¡ ºc/2

1 C ¹0
c¹c ¡ ºc

;

q.I jD/ D
.1 ¡ ºc/¹

0
c¹c

1 C ¹0
c¹c ¡ ºc

;

q.SjI / D 1 ¡ ºc:

Using Equations (109) and (110) in Equation (105) and comparing the expression (20) for the weight W
of an alignment path, we see that

Pc[ Oa1Ii; Ob1;j I Rc] D P0[Oa1;i ; Ob1;j ] ¢ wc.ai ; bj / ¢ W [RcI Oa1IiD1; Ob1;j¡1I wc; gc] (111)
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with

wc.a; b/ D
.1 ¡ ºc/2

.1 C ¹c ¡ ºc/2 C .¹0
c ¡ 1/¹2

c

¢
Tc.bja/

p.b/
(112)

The restricted total probability OPc for the sequence pair [Oa1Ii ; Ob1Ij ] with .ai ; bj / paired is obtained by
summing over all allowed set of substitutions Rc , subject to the constraint that the last substitution is the
pair .ai; bj /. Using Equation (111) together with (21), we � nd

OPc[Oa1Ii ; Ob1Ij ] D
X

R c.1;1Ii¡1;j¡1/

Pc[ Oa1Ii; Ob1;j I Rc] (113)

D P0[ Oa1Ii ; Ob1Ij ] ¢ wc.ai; bj / ¢ W1;1Ii¡1;j¡1[ Oa1Ii¡1; Ob1Ij¡1I wc; gc]:

To � nd the unrestricted total probability of generating the entire sequence pair [a1Im; b1;n], we need
to account for how the model M terminates after the last substitution event .ai ; bj /. According to the
description above, if either i D m or j D n; then the other sequence is simply completed by generating
random elements using the background frequency p. However, if i < m and j < n, then one of the
following occurs to complete use of the sequences before the other sequence is completed with random
elements.

² Insertion occurs after the substitution .ai ; bj /, completing the sequence b (i.e., for bjC1 : : : bn) with
random elements. The associated probability is

QPc[Oa1Ii<m; Ob1;n] D OPc[Oa1Ii ; Ob1;j ] ¢ [q.I jS/=º] ¢
nY

j 0DjC1

[ºp.bj 0/]:

² Deletion occurs after the substitution .ai; bj /: the remainder of the sequence a (i.e., elements aiC1; : : : ; am)
is completely deleted. The associated probability is

QPc[Oa1Im; Ob1;j<n] D OPc[ Oa1Ii; Ob1;j ] ¢ [q.DjS/=º] ¢
mY

i0DiC1

[ºp.ai0/]:

² A deletion occurs from elements aiC1; : : : ; ak with k < m, followed by an insertion completing the
sequence b. The associated probability is

QP 0
c[Oa1Ik<m; Ob1;n] D OPc[ Oa1Ii; Ob1;j ] ¢ [q.DjS/=º] ¢

kY

i0DiC1

[ºp.ai0/] ¢ [q.I jD/=º] ¢
nY

j 0DjC1

[ºp.bj 0/]:

The total probability of obtaining the sequence pair [a, b] is then the sum of the above possibilities. We
have

Pc[a; b] D OPc[Oa1Im; Ob1In] (114)

C
m¡1X

iD1

mY

i 0DiC1

p.ai 0/ ¢ f OPc[Oa1Ii ; Ob1In] C QPc[ Oa1Ii ; Ob1In]g

C
n¡1X

jD1

mY

j 0DjC1

p.bj 0/ ¢ f OPc[Oa1Im; Ob1Ij ] C QPc[ Oa1Im; Ob1Ij ]g

C
m¡1X

kD1

mY

i 0DkC1

p.ai0/ QP 0
c[Oa1Ik; Ob1In]:
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The above can be written compactly as

Pc[a; b] D P0[a; b] ¢ QW1;1Im;n[a; bI wc; gc]: (115)

QW is most transparent when expressed in terms of the auxiliary quantities W S , W D , and W I introduced
in the dynamic programming calculation of W [Equation (47)] in Appendix A,

QW1;1Im;n D
m¡1X

iD1

[W S
1;1Ii;n CW I

1;1Ii;n]C
n¡1X

jD1

[W S
1;1Im;j CW D

1;1Im;j ]CW S
1;1Im;n CW I

1;1I0;n CW D
1;1Im;0; (116)

with the parameters of Equation (47) determined by the weight functions wc and gc . Equation (116) is
just the af� ne gap version of Equation (30) describing the total weight entering the forward boundaries at
i D m and j D n (i.e., the dashed lines of Fig. 1(b)).

Equation (115) together with the ef� cient formula (116) for computing QW are very useful results which
are exploited in the main text to compute the relative entropy with minimal effort. Here, we make another
application of (115) on the average log-likelihood score of the alignment of correlated sequence pairs.
Suppose the sequences a and b are generated by the evolution model M, with mutation probabilities wc

and gc . Let us align these two sequences using probabilistic local alignment (25) and (26), with weight
functions w and g. We have

Á.w; gI wc; gc/ ´
X

[a;b]

ln QW [a; bI w; g]Pc[a; bI wc; gc] D hln QW [w; g] ¢ QW [wc; gc]i0; (117)

due to the relation (115).
An important issue in homology detection is to determine the alignment weights .w; g/ which maximizes

Á. Given the normalization condition h QW [w; g]i0 D 1 D h QW [wc; gc]i0 and using the inequality ln x · x¡1
for all x > 0, it is straightforward to show that

Á.w; gI wc; gc/ · Á.wc; gcI wc; gc/: (118)

Thus the optimal alignment weights w¤ and g¤ needed to obtain maximum Á are given by

g¤.`/ D gc.`/ and w¤.a; b/ D wc.a; b/: (119)

The relations (118) and (119) form the basis of the maximum likelihood approach to the parameter selection
problem encountered in any optimization problems (Durbin et al., 1998).

Relations similar to those described above between the alignment weights and correlated ensembles
can be established for local alignment, provided we expand the mutation model to include free insertion
modules (Hughey and Krogh, 1996) at the beginning and end to generate random background sequences.
Additional probability conservation conditions are needed to specify the relative abundance and length of
the correlated substrings. We will not delve into this case here as it will not be directly relevant to the
subject matter of this study.
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