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The rapid emergence of bacterial strains resistant to multiple anti-
biotics is posing a growing public health risk. The mechanisms
underlying the rapid evolution of drug resistance are, however,
poorly understood. The heterogeneity of the environments in
which bacteria encounter antibiotic drugs could play an important
role. E.g., in the highly compartmentalized human body, drug
levels can vary substantially between different organs and tissues.
It has been proposed that this could facilitate the selection of
resistant mutants, and recent experiments support this. To study
the role of spatial heterogeneity in the evolution of drug resis-
tance, we present a quantitative model describing an environment
subdivided into relatively isolated compartments with various anti-
biotic concentrations, in which bacteria evolve under the stochastic
processes of proliferation, migration, mutation and death. Analyti-
cal and numerical results demonstrate that concentration gradients
can foster a mode of adaptation that is impossible in uniform en-
vironments. It allows resistant mutants to evade competition and
circumvent the slow process of fixation by invading compartments
with higher drug concentrations, where less resistant strains can-
not subsist. The speed of this process increases sharply with the
sensitivity of the growth rate to the antibiotic concentration, which
we argue to be generic. Comparable adaptation rates in uniform
environments would require a high selection coefficient (s > 0.1)
for each forward mutation. Similar processes can occur if the het-
erogeneity is more complex than just a linear gradient. The model
may also be applicable to other adaptive processes involving envir-
onmental heterogeneity and range expansion.
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Worldwide, bacteria exhibiting resistance to multiple anti-
biotics have become a pressing public health problem. Re-

sistant strains have consistently emerged a few years after the
introduction of new antibiotics, and an increasing number of
strains can evade multiple classes of antimicrobial drugs. Even
though antibiotic resistance evolves right under our eyes and is
well documented, the principles underlying its rapid evolution
are still poorly understood (1, 2).

Many factors are likely to contribute to the rapid evolution of
antibiotic resistance. One is the mere size of bacterial popula-
tions: a tuberculosis cavity, for instance, can contain 107

–109

bacilli (3). This situation is exacerbated by mutator strains, which
have over-all increased mutation rates (4), and stress-induced
elevation of mutation rates (5). The selection of rare resistant
mutants is thought to be facilitated by low drug concentrations,
which may occur after a treatment or when a treatment regimen is
not strictly adhered to (6). Once enzymes providing some degree
of resistance have emerged, they can be efficiently transferred to
other bacteria by mobile elements such as plasmids, transposons,
and integrons (1).

Here, we explore whether spatial heterogeneity could facilitate
the evolution of antibiotic resistance. In people and livestock
treated with antibiotics, pharmaco-kinetic parameters vary
between different organs and tissues (7). As a result, antibiotic
concentrations are not spatially homogeneous (8). In addition,
bacteria migrate between both treated and untreated patients,

who have a spectrum of immune responses. Antibiotic resistance
therefore naturally evolves in heterogeneous environments.

In itself, the idea that environmental heterogeneity could pro-
mote the evolution of drug resistance is not new. Over a decade
ago, it was proposed that heterogeneity could assist the evolution
of drug resistance of HIV (9). Models suggested that, in homo-
geneous environments, the drug concentration has to be in a nar-
row range near the minimal inhibitory concentration (MIC) of
the virus (called the selective window) for an effective selection
of resistance: if the concentration is too high, both the wild type
and feasible mutants are inhibited, whereas if it is too low, the
wild type may out-compete the mutant (9). However, if the envi-
ronment consists of two compartments, in one of which the drug
does not penetrate well (a sanctuary or reservoir), the selective
window is greatly enlarged. Samples from postmortem tissues
of AIDS patients indeed suggest that compartmentalization in
the central nervous system plays a role in the evolution of drug-
resistant HIV strains (10).

A similar effect could favor the evolution of antibiotic resis-
tance in bacteria (8, 11, 12). Often, several mutations are
required for a bacterium to obtain a medically relevant resis-
tance level (13). In a homogeneous drug concentration, a single
bacterium has to rapidly acquire these mutations to survive the
treatment. If more than 2 specific mutations are required, this is
unlikely (see SI Text). Heterogeneous environments, however,
could provide sanctuaries, allowing these mutations to be se-
lected one by one. Such ideas have led to the concept of “resis-
tance-selective environments” as environments that favor the
evolution of antibiotic resistance (11, 12).

Similar ideas have emerged independently in a different con-
text. In ecology, a habitat is called a sink if mortality exceeds
reproduction, so that a population is maintained only owing to
constant immigration from a habitat where reproduction exceeds
mortality, called a source (14–16). The genotypes of immigrants
into the sink are sampled from the standing genetic variation of
the source, and are poorly adapted to the sink. Such dynamics
could foster adaptation to the sink conditions (14–16). Indeed,
the idea of a sanctuary introduced above largely coincides with
the notion of a source. Not surprisingly, source–sink dynamics
have recently been associated with the evolution of virulence
(17–19), insecticide resistance (20), and antibiotic resistance (21).
We recently developed a stochastic model of adaptation in
source–sink ecologies and derived mathematically how the rate
of adaptation to the sink conditions depends on the population
size as well as the rates of migration, mutation, reproduction, and
death (22).
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Recent experiments vividly illustrated the potential role of
environmental heterogeneity in promoting antibiotic resistance
(23). In these experiments, a microfluidic device was used to
set up a smoothly varying concentration profile of Ciproflaxacin
in a two-dimensional landscape of connected hexagonal wells.
Surprisingly, after bacteria were inoculated in the center of the
device, resistance to Ciproflaxacin evolved in just 10 h, due to
four single-nucleotide substitutions in three genes. Even though
the mechanism that allowed the rapid accumulation of these mu-
tations is unknown, the concentration gradient seems essential, as
resistance did not evolve when the concentration was uniform.

Even though the importance of spatial heterogeneity for the
evolution of antibiotic resistance has been suggested in the litera-
ture, to our knowledge no attempts have been made to quantita-
tively study possible mechanisms in mathematical models. Here
we formulate such a model, called the staircase model, for the first
time. In its simplest form, this model describes adaptation in an
antibiotic gradient, but many of its qualitative features also apply
to more general kinds of spatial heterogeneity. To correctly cap-
ture the importance of rare stochastic events, the model is fully
probabilistic. Solution of the model demonstrates that spatial het-
erogeneity provides a mode of adaptation that is impossible in
uniform environments and could strongly facilitate the evolution
of antibiotic resistance. Analytical calculations and numerical
simulations were used to characterize this mode of evolution.
We present explicit mathematical results for the adaptation rate
as a function of parameters. These results show that the speed of
this mode of evolution increases sharply if the bacterial growth
rate depends abruptly on the drug concentration, e.g., for a mesa-
shaped fitness landscape. To place these results in perspective, we
compare them to a generic, spatially uniform model of evolution
on a “Mt. Fuji”-type fitness landscape. This comparison shows
that similar adaptation rates can be obtained in homogeneous
environments, but only if each mutation required for resistance
carries a large fitness advantage.

Model
Fig. 1 illustrates the staircase model. We consider an environment
that is divided into a series of relatively isolated compartments,
inhabited by bacteria. In the figure, these compartments are
plotted horizontally. Each compartment is associated with a fixed
antibiotic drug concentration, which increases from left to right.
The genotype of each bacterium is characterized by a positive
integer g, plotted vertically. Importantly, bacteria with a larger
g are more resistant (i.e., have a higher MIC), and hence can pro-

liferate in compartments with higher drug concentrations: a bac-
terium with genotype g ¼ 3 can proliferate in compartments 1 to
3, but not in compartments 4 and up. This defines a diagonal
“staircase” separating the area of the diagram in which bacteria
can proliferate (above the staircase) from the region where they
cannot (below it).

Each bacterium can proliferate, migrate, die (possibly due to
clearance by the immune system), and mutate, all in a stochastic
manner. Migration occurs between neighboring compartments, at
a rate ν per bacterium. Bacteria die at a rate δ. Forward muta-
tions, at a rate μf , increase g by one, corresponding to an in-
creased resistance. Backward mutations do the opposite, at a
rate μb. Bacterial proliferation (or “growth”) takes on the logistic
form; the density-dependent proliferation rate of a bacterium of
genotype g in compartment i is:

γðNiÞ ≡
�
rð1 −Ni∕KÞ if g ≥ i and Ni ≤ K;
0 otherwise. [1]

Here,Ni is the population size in compartment i (including all
genotypes), K is the carrying capacity of the compartments, and
r is referred to as the “growth rate”. (Note that γðNiÞ ≈ r at
population sizes well below K). For simplicity, we have assumed
that r is the same for all genotypes and compartments above the
staircase, and 0 below it. This all-or-none behavior will be relaxed
below, where we will show that it does not affect the qualitative
results as long as r is well above the death rate δ. The logistic
growth introduces competition between all bacteria living in the
same compartment, irrespective of their genotype, but not be-
tween those in different compartments. It also ensures that the
population in each compartment remains finite: Growth, death
and migration balance when the population reaches a size
N ≈ ½1 − δ 0∕r�K, where δ 0 ≡ δþ 2ν is the total rate at which
bacteria disappear from a compartment, by death or migration.

Results
How would an initially non-resistant population ðg ¼ 1Þ evolve
under the aforementioned processes? To answer this question
for a wide range of parameter values, we have used both compu-
ter simulations (kinetic Monte Carlo) and analytical theory.

Climbing the Staircase. Fig. 2 shows snapshots of a typical simula-
tion; see also Movie S1 for the entire dynamical process. The
darkness of each “tile” indicates the number of bacteria of the
corresponding genotype and compartment; also see Fig. S1. Initi-
ally, only compartment 1 is inhabited, and all bacteria have type 1.
However, in the course of the simulation, the population gradu-
ally spreads up- and rightward. Mutants emerge with increasing
resistance, allowing the population to invade more andmore com-
partments. Amoving front forms that steadily climbs the staircase.

Importantly, the evolution process exhibited in Fig. 2 is funda-
mentally different from the notion of a population climbing a fit-
ness landscape. In a typical cartoon representation of a fitness
landscape (Fig. S2 A and B), the vertical axis represents fitness
(often identified with the growth rate) and the horizontal axis a
genotype space; populations climb “fitness slopes” because indi-
viduals higher up produce more offspring on average. In contrast,
neither of the axes in Fig. 2 represents fitness. Because the growth
rate is fixed above the staircase and 0 below it (see Eq. 1), the
space-dependent fitness landscape is actually a mesa-shaped pla-
teau (Fig. S2C). The adapting population spreads along the edge
of this plateau, despite the absence of a fitness slope.

If there is no fitness slope, why does the population adapt? As
will be shown quantitatively below, a mutant with an increased
resistance can, by chance, end up in a previously unpopulated
compartment and found an entirely new colony. Each adaptation
therefore allows the population to expand to an additional
compartment, and conversely, the adaptation is successful only
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Fig. 1. The staircase model. We consider an environment divided into sev-
eral compartments (plotted horizontally) in which bacteria proliferate
(grow), migrate, mutate, and die. The bacterial genotypes are characterized
by an integer g (plotted vertically) reflecting their of antibiotic resistance
level. Given its genotype and location, each bacterium inhabits a unique
“tile” on the diagram. Mutations move bacteria one tile up or down, and
migration moves them left or right. Importantly, the concentration of an
antibiotic drug increases from left to right. As a result, bacteria can grow
in compartment i only if they have a genotype g ≥ i, i.e., if they live above
the diagonal “staircase”.
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because it allows the population to expand its range. As a result,
the population grows as it adapts.

As Movie S1 shows, the population front advances in a step-
wise fashion, where a step is the colonization of a new compart-
ment. Each step is triggered by the arrival of a new, more resistant
mutant in the next uncolonized compartment. After this “foun-
der” arrives, a typical infection ensues: unless, by chance, the
founder’s lineage quickly goes extinct, an exponentially growing
population is established that rapidly fills up the compartment’s
carrying capacity. Another step is taken only when the next, rare
mutant invades the next compartment.

As the front ascends the staircase, a “comet tail” trails behind.
This arises because resistant strains tend to wander backward (left-
ward), where they compete with less resistant strains. Even though
the more resistant strains have no growth advantage in these com-
partments, they eventually drive their competitors to extinction
owing to their continued immigration. Indeed, in time very few
bacteria with g < 3 remain, even in compartment 1 (see Fig. S1).

The Adaptation Steps: Source–sink Dynamics at the Front. Fig. 3A is
an enlargement of a snapshots from Fig. 2. The population has
adapted to the drug concentration in compartment 6, but cannot
yet invade compartment 7. Bacteria constantly migrate from
compartment 6, where reproduction exceeds mortality, to com-
partment 7, where mortality exceeds reproduction. This means
that compartments 6 and 7 display source–sink dynamics (intro-
duced above). In fact, at any time, the population front displays
source–sink dynamics. As a result, the adaptation processes in the
staircase model resemble those in source–sink systems (22).

An adaptation step will occur when a founder, with genotype 7,
finds compartment 7. This can come about in many ways, but few
are feasible. Red and blue arrows indicate the two most likely
“paths”. These each involve only one mutation and one migration
event. Other paths require more events: e.g., a bacterium of type 5
in compartment 5 could acquire two mutations and migrate two
steps to the right. But assuming mutation and migration rates are
low, this is much less likely. The blue path starts with a forward

mutation in compartment 6. The resulting mutant has no advan-
tage there; yet, it or one of its descendants has a chance to move
to compartment 7. Such a scenario, in which an initially neutral
mutation becomes beneficial by a fortunate change of environ-
ment, is known as the Dykhuizen–Hartl effect (24, 25). In the red
path, the order is reversed: a bacterium first migrates to compart-
ment 7; there it cannot grow, but may obtain a mutation before it
is cleared. Both paths can produce a founder, but the one that
tends to do it faster is traveled more often.

When properly modified, the theory of source–sink systems
can predict the rates of both paths and their relative likelihoods
(22). (Analytical results and derivations are provided in the SI
Text). The theory indicates that two situations have to be distin-
guished. If forward mutations are rare (that is, μfN ≪ δ 0), the blue
path is faster than the red one, and adaptation typically follows the
blue path. We call this as the mutation-limited regime. If instead
forward mutations occur frequently (μfN ≫ δ0), the blue and red
paths become equally fast and equally likely (the migration-limited
regime). The red path is never faster than the blue path.

Fig. 3B displays, for the simulation shown in Fig. 2, a “historical
record” of the spread of the population. For each tile, an arrow
indicates how its first occupant arrived: by immigration (horizon-
tal arrows) or by mutation (vertical ones). The arrows along the
staircase are colored to visualize for each adaptation step whether
the blue or the red path was taken. The parameters are in the
mutation-limited regime, where the theory predicts the blue path
to be faster. Indeed, the red path is taken only once. Quantita-
tively, the theory predicts the blue path to be

ffiffiffiffiffiffiffiffiffiffi
δ 0∕ν

p
≈ 10 times

faster; we repeated the simulation 50 times and confirmed that the
red path was taken in 11� 1% of the steps. Fig. 3C shows similar
data for a simulation with parameters in the migration-limited re-
gime, where both paths should be equally fast; as expected, the red
path was taken in 47� 3% of the steps.

The Adaptation Rate. After a few steps, the rate with which the
front advances becomes constant (see Fig. S3). This steady-state
rate v is a natural measure of the adaptation rate. How fast can

Fig. 2. Snapshots of the population evolving antibiotic resistance. Shades of gray indicate the population density at each tile. The population, initially
non-resistant and hence confined to compartment 1, adapts and expands simultaneously, in a probabilistic, stepwise fashion. While the population front
“climbs the staircase”, a “comet tail” trails behind. Parameters: K ¼ 105, r ¼ 1∕h, μf ¼ 10−7∕h, μb ¼ 10−4∕h, δ ¼ 10−1∕h, ν ¼ 10−3∕h.
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Fig. 3. Dynamics of the model. (A) Snapshot of a simulation. At this time, the population has adapted to the drug concentrations in compartments ≤6. The
next adaptation step most likely unfolds in one of two ways, indicated with blue and red arrows. The adaptation rate critically depends on the rates of these
two “paths”. (B) The spread of the bacteria for the simulation in Fig. 1. For each tile, an arrow indicates the origin of its first inhabitant. Colors indicate for each
adaptation step whether the red or the blue path was taken. The blue path is dominant. (C) The red path becomes more likely if the mutation rate and the
carrying capacity are high. Here, μfK ¼ 102; now the red and blue paths occur with equal probability. (D) If drug resistance comes at a large fitness cost s, the
blue path is repressed. Here, s ¼ 0.2; both the population density at the end of the simulation and the spread of the population are shown. No comet tail is
found. (Parameters: as in Fig. 1).
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this mode of adaptation be, and how does this depend on the
parameters?

Fig. 4 shows the adaptation rate, obtained by simulation, for a
large range of parameters. Because analytical calculations (dis-
cussed below) indicate that the adaptation rate depends on
μf andK only through their product μfK, it is plotted as a function
of μfK, for several values of the migration rate (Fig. 4A) and the
death rate (Fig. 4B). Importantly, the results establish that adap-
tation in the staircase model can be very fast. Assuming reason-
able colony sizes, of the order K ¼ 108 (3), forward mutation
rates as low as μf ¼ 10−8∕h (estimates range from 10−6 to
10−9 per cell division (3, 5, 26)), and a low migration rate
ν ≈ 10−3∕h, advantageous mutations can accumulate at a rate of
1 in 40 h. The waiting time can be reduced further, to mere hours,
if the mutation rate is elevated by stress-induced mutagenesis (5),
hypermutators (27), and/or if the migration rate is larger.

To further characterize the rate of adaptation, we use a model
of evolution in a homogeneous environment guided by a “Mt.
Fuji”-type fitness landscape as a benchmark. We imagine a well-
mixed population of bacteria behaving exactly as in the staircase
model: they grow logistically, mutate forward and backward, and
die, all stochastically at the specified rates. (Migration has no
effect in this model and is neglected). We assume that each
forward mutation carries a selection coefficient s, leading to the
fitness landscape shown in Fig. S4A. In this model, the population
again obtains a constant adaptation rate (see Fig. S4B). In
Fig. S4C the adaptation rates for a broad range of parameters,
obtained by simulation, are plotted against s (black symbols).
Also shown are the adaptation rates of the staircase model, for
the same parameters (horizontal lines and red symbols). This
comparison allows us to characterize the adaption rate in the
staircase model by calculating the selection coefficient required
to obtain the same rate in the homogeneous model. The adaption
rate of the staircase model is seen to correspond to a high selec-
tion coefficient of s > 0.1 for the wide range of parameters tested.
This result is based on a low migration rate ν ≈ 10−3∕h (as used
above); increasing this rate only increases the corresponding
selection coefficient. This demonstrates that adaptation in a
homogeneous environment can also be effective, but requires
large selective advantages for each mutation to achieve the same
adaptation rate. Ultimately, this is because a spatial structure
strongly reduces the competition experienced by beneficial
mutants. In uniform Mt. Fuji models, large time scales are asso-
ciated with the fixation of mutants. In the staircase model, this
process is circumvented, because a founder can rapidly establish
a new population in a new compartment without having to out-
compete less resistant strains.

Fig. 4 also shows predictions from analytical calculations
(curves). To calculate the rate of adaptation, we exploited an
important observation. We mentioned that each adaptation step
requires the arrival of a new founder in the next not-yet-colonized

compartment, which then establishes an exponentially growing
colony. The observation is that the adaptation rate is usually not
limited by this fast exponential growth phase, but by the waiting
time before the founder arrives (exceptions are discussed below).
The adaptation rate thus follows from the average waiting time
before the founder’s arrival, which can be calculated analytically
using the theory of first passage processes (28) (see SI Text).

In both Fig. 4A and B, two regimes can be distinguished: at low
values of μfK (the mutation-limited regime discussed above)
the adaptation rate is proportional with μfK, while at high values
(the migration-limited regime) it scales as

ffiffiffiffiffiffiffiffi
μfK

p
. Indeed, the ana-

lytical theory confirms that

v ≈

8>>><
>>>:

μfNffiffiffiffiffiffiffiffiffiffi
δ 0∕ν

p ; if μfN ≪ δ 0;

ffiffiffiffiffiffiffiffiffiffi
μfN
π∕2ν

r
; if μfN ≫ δ 0:

[2]

(Remember that N is proportional to K). These equations also
show that the adaptation rate is proportional to

ffiffiffi
ν

p
(unless

ν ≈ δ 0), and that in the migration-limited regime it depends only
weakly on the death rate, whereas in the mutation-limited regime
it scales approximately as 1∕

ffiffiffi
δ

p
. As evident from Fig. 4, the the-

ory and the simulation results are in excellent agreement; only
when the adaptation is very fast (v ≈ 10−1∕h) serious deviations
occur. This is no surprise: in this very fast regime, the exponential
growth phase becomes a substantial part of the adaptation pro-
cess and can no longer be neglected.

There is one important caveat, however. If the growth rate r of
the founder is close to its death rate, the exponential growth
phase becomes slow, because growth and death of the founder’s
population almost cancel; indeed, the time scale of this phase is
Te ≈ lnN∕ðr − δ 0Þ. In this regime, the theory above breaks down.
More importantly: when the growth of the founder’s colony
becomes slow, the adaptation rate slows down too. The adapta-
tion rates presented above therefore require that r is substantially
greater than δ 0, so that Te is small (see Discussion).

Including a Cost of Resistance.Drug resistance often requires adap-
tations that carry a fitness cost in the absence of the drug (13, 29).
To examine the effect of such a cost, we slightly modify the model.
So far, in compartment i, all bacteria with genotype g ≥ i had
the same growth rate r. Instead, we now assume that bacteria with
g > i (more resistant than necessary) grow a factor 1 − s more
slowly than those with g ¼ i. The cost s can be interpreted as
a local selection coefficient.

We included the fitness cost in our theory (see SI Text and
Movie S2) (22). A fitness cost only alters the blue path. The result
shows, however, that the effect is small provided s <

ffiffiffiffiffiffiffiffiffiffi
ν∕δ 0p

. That
is, unless the migration rate is tiny compared to the death rate, a
large fitness cost is required to significantly hamper adaptation.
We have tested this prediction with simulations at various values
of s, presented in Fig. 5A. The results confirm that the adaptation
rate is only mildly affected unless s >

ffiffiffiffiffiffiffiffiffiffi
ν∕δ 0p

≈ 0.1, which in po-
pulation genetics is considered a very large fitness cost, in parti-
cular at large population sizes (here, K ¼ 105) (30).

To examine the maximal effect of a resistance cost, we consider
the case where genotypes g > i do not grow at all. Dynamically,
the blue and red paths then become very similar, except that the
roles of mutation and migration are reversed. Indeed, they are
now equally fast (see SI Text). It can then be shown that the adap-
tation is slowed down by at most a factor

ffiffiffiffiffiffiffiffiffiffiffiffi
δ 0∕4ν

p
. For the para-

meters in Fig. 5A this amounts to a factor of 5. The effect of a
fitness cost is therefore generally mild, unless s is very large and
the migration rate is very low compared to the death rate.

The cost of resistance does influence the comet tail. A comet tail
arises when strains migrating leftwards out-compete strains with a
lower resistance. In the presence of a high resistance cost, however,

A B

Fig. 4. The adaptation rate. Symbols represent averages over 50 simula-
tions, 15 steps each; the errors are smaller than the symbols. Lines represent
theoretical predictions. (A) The adaptation rate increases with μf, K, and ν,
and can become remarkably high. Two scaling regimes are visible. (B) The
adaptation rate decreases with the death rate provided μfK is small. Unless
specified, parameters are as in Fig. 1.
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overly resistant strains have a reduced growth rate and will no long-
er be able to replace their less resistant cousins. This happens
when the rate of immigration, νN, is more than compensated by
the loss in total growth rate suffered due to the fitness cost, which is
approximately rsNð1 −N∕KÞ when the immigrants reach fixation.
Thus we directly obtain that the comet tail is suppressed if s > ν∕δ 0
(a precise derivation is given in the SI Text). Then, the population
is restricted to a narrow band above the staircase, and every com-
partment becomes populated with specialists adapted precisely to
the local antibiotic concentration, as in Fig. 3D.

A Finite Growth Rate Below the Staircase.Thus far, we have assumed
that the genotypes below the staircase cannot grow at all, which is
probably not realistic. We therefore study how the dynamics
change if bacteria below the staircase do grow, albeit at a reduced
rate r0. If r0 > δ, the bacteria do not need to adapt to start a grow-
ing population in all compartment, because their growth rate
exceeds their death rate from the start. Since this is not the sce-
nario we set out to study, we are interested in the regime r0 ≤ δ.

Fig. 5B shows the adaptation rate as a function of r0, obtained
by simulations. Surprisingly, the adaptation rate is hardly affected
as long as r0 is smaller than the death rate. In this case an immi-
grant is indeed likely to die before it can grow. Only when r0
approaches δ does the adaptation speed up; but even at r0 ¼ δ
(the dashed line) the effect is less than a factor of two. This sug-
gests that the growth rate below the staircase is of minor impor-
tance. This turns out to be true quite generally, as we derive in the
SI Text. Essentially, even though increasing r0 speeds up the red
path, given the constraint r0 < δ it will never become faster than
the blue path (in the absence of a resistance cost). At best, both
paths can become equally fast, in which case the total rate of
adaptation will be doubled.

An Increased Death Rate Below the Staircase. We have so far
assumed that the antibiotic interfered with the growth of the bac-
teria. Some antibiotics, however, affect a bacterium’s death rate
instead. How does an increased death rate for bacteria below the
staircase affect adaptation?

Increasing the death rate below the staircase, now called δ0,
will inhibit the red path: if δ0 is high, immigrants tend to die
before they have a chance to grow or mutate. Therefore, when
δ0 is increased, the red path is gradually eliminated, until only
the blue path remains. At the same time we have seen that, in
the absence of a resistance cost, the red path is typically slower
than the blue one to begin with, so that the rate of adaptation is
dominated by the rate of the blue path. At best, the red path is
initially as fast as the blue one, in which case eliminating it leads

to a two-fold slowdown. The adaptation rate must therefore be
insensitive to changes in δ0.

Fig. S5 shows results for the special case in which the growth
rate below the staircase is not affected at all by the drug (r0 ¼ r),
but the death rate is. For otherwise fixed parameters, we vary δ0.
As predicted, the adaptation rate is very insensitive to δ0. The the-
oretical rate of the red path is also plotted, and decreases rapidly
with δ0. Only if δ0 is minimal (δ0 ≈ r0) does the red path contribute
somewhat to the adaptation rate, resulting in just a slight increase.

All-to-all Migration. In all the above cases, migration was possible
between neighboring compartments only. This is reasonable if the
compartments are lined up in a quasi-one-dimensional concen-
tration gradient, as realized in the experiments of (23). This is
not necessarily always the case, however. E.g., transmission of
bacteria from one organ to another or from one patient to
another need not follow the order of drug concentrations. To
demonstrate that a strict ordering of the compartments is not
required for the qualitative results described above, we briefly
consider a variation of the model in which migration is possible
between any two compartments.

It is beyond the scope of this article to fully characterize this
model, but simulation results can provide a proof of principle; see
Supporting Fig. S6 and Movie S3. As before, the population
quickly adapts and expands, following the familiar stepwise pat-
tern. Such simulations establish that no linear ordering of the
compartments is required for fast adaptation and range expan-
sion to occur.

However, because migration is now possible between any two
compartments, the dynamics become different at the quantitative
level. Besides the blue and red paths—still the shortest paths to
adaptation—the all-to-all migration introduces many alterna-
tives. The most resistant strain at a given time will spread rapidly
to all other compartments. The next mutation can then occur in
any of those, from where the mutant has a chance to migrate to
the uncolonized compartment with the lowest drug concentration
and establish a colony. Even though each path of this type re-
quires at least three events (e.g., migration, mutation, and again
migration), many such paths are possible, and together they can-
not be ignored. An interesting consequence is that each subse-
quent adaptation step is slightly different, because the number
of already colonized compartments increases; as a result, the
adaptation rate increases in time, as shown in Fig. S3.

Discussion
We presented a stochastic model to study the evolution of anti-
biotic resistance in the presence of a gradient of antibiotic. The
model combines ideas from several fields, including the concepts
of sanctuaries, the selective window, the notion of resistance-
selective environments, and the theories of source–sink dynamics
and range expansion. The model was purposefully kept simple:
thus the roles of growth, death, migration, mutation, population
size, fitness cost of resistance, and spatial geometry could be char-
acterized quantitatively. It serves as the starting point for more
realistic and complex models in future studies.

Our results show that gradients of antibiotics can lead to a mode
of adaptation that is qualitatively different from evolution in
uniform environments. A key point is that, in heterogeneous en-
vironments, adaptation and range expansion are likely coupled.
This fundamentally distinguishes the staircase model from other
models with spatially structured populations (31–36), or models
of evolution at the front of growing colonies (37). This has impor-
tant consequences. First, it allows more resistant mutants, with an
expanded range, to evade competition by invading previously in-
accessible habitats. Second, compartments with a low antibiotic
concentration act as sanctuaries, allowing mutations to be selected
one by one, whereas in homogeneous environments all mutations
are required at once to survive a drug treatment. In this sense,

A B

Fig. 5. Consequences of a resistance cost or a finite growth rate below the
staircase. Circles present simulation results; lines are smooth interpolations.
(A) The adaptation rate is insensitive to the cost s unless s >

ffiffiffiffiffiffiffiffiffiffi
ν∕δ 0p

, where
δ0 ≡ δþ 2ν. (B) It is also insensitive to the growth rate of the bacteria below
the staircase, r0. The regime r0 > δ is outside the scope of this study, because
there adaptation is not required to colonize all compartments. Nevertheless,
we see that the adaptation rate first increases, but then rapidly decreases as
r0 approaches r; in this limit a founder, experiences strong competition from
less-resistant immigrants, which grow at a very similar rate r0 ≈ r. (Parameters
are as in Fig. 1 except that μf ¼ 10−6∕h in Fig. 4A).
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heterogeneity truly provides a staircase to resistance. Third,
because the population expands until the drug concentration at
the border of its range is just above the current MIC, this concen-
tration is always conveniently in the selective window of the next
mutation. Nevertheless, similar adaptation rates can also be ob-
tained in uniform environments, provided each mutation required
for resistance is under strong selection (s > 0.1).

However, an important caveat was found: to obtain a fast
adaptation rate, the growth rate of the founder needs to be sub-
stantially higher than its death rate. In the staircase model, the
growth rate abruptly drops from its maximum value r at i ≤ g
to its minimal value r0 at i > g (the plateau-like fitness landscape
of Fig. S2C). As a result, the founder can have a growth rate
r substantially higher than δ 0 in compartment i and a growth rate
r0 smaller than δ 0 in compartment iþ 1, as illustrated by the red
lines in Fig. S7A. If the growth rate is a smoother function (black
lines), the founder’s growth rate is expected to be closer to the
death rate (compare the sizes of the two double-headed arrows),
which could considerably slow down adaptation. To test how the
growth of real bacteria depends on the antibiotic concentration,
we have measured the growth rate of an Escherichia coli strain
subjected to various concentrations of the antibiotic chloramphe-
nicol (Cm). This strain (EQ92, see SI Text) harbored weak con-
stitutive expression of Cm Acetyltransferase (CAT), providing
partial resistance to Cm. The results, plotted in Fig. S7B, indicate
that growth is halted abruptly when ½Cm� > 0.5 mM. Such an
abrupt dependence of bacterial growth on drug concentration
may arise generically due to a global, growth-rate dependent
positive feedback loop (38) caused by a generic negative effect
of antibiotics on gene expression (39) (including the expression
of drug resistance such as CATor other endogenous mechanisms
such as multidrug efflux pumps), and the negative effect of this
expression on the efficacy of antibiotics (manuscript in prepara-

tion). Given the caveat discussed above, this positive feedback
loop may contribute to a fast adaptation. Yet, decisive tests will
have to come from evolution experiments; setups using microflui-
dic devices seem ideally suited to provide a proof of concept in
controlled laboratory conditions (23).

Lastly, we note that although the staircase model was con-
ceived to study the evolution of antibiotic resistance, its formula-
tion is quite general and may be applicable to other evolutionary
processes that involve changes in a species’ range. In the course of
evolution, species have adapted to a huge variety of conditions
and now populate virtually every corner of the earth. To under-
stand the evolutionary processes that produced this diversity, a
thorough understanding of the role of adaptive range expansion
seems crucial. We hope that the staircase model will contribute to
this understanding as well.

Materials and Methods
All simulations were performed using the standard kinetic Monte Carlo algo-
rithm. For the effect of antibiotic on the growth of partially resistant bacter-
ia, we constructed an E. coli K-12 strain constitutively expressing CAT from
the chromosome. This strain was grown in minimal medium containing
various sublethal amounts of Cm. (See SI Text for details.)

Note. While this workwas under review, a relatedmanuscript was brought to
our attention: Greulich P, Waclaw B, Allen RJ, “Interplay between mutational
pathway and drug gradient controls time to evolution of drug resistance,”
arXiv:1202.5431v3.
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