B. Basic Models of Transcriptional Control

1. tsx init by RNAP alone

\[\text{RNAP + promoter } \xleftarrow{K_p} \text{RNAP} \cdot \text{promoter } \xrightarrow{\alpha} \text{RNAP + promoter + mRNA} \]

• mRNA level: \[\frac{d}{dt}[m] = \alpha \cdot P - \beta \cdot [m] \]

- probability of promoter occupation by RNAP

\[\text{mRNA degradation} \]

• steady-state mRNA level (measurable): \[[m^*] = \frac{\alpha \cdot P}{\beta} \]

- from protein-DNA interaction, expect \[P = \frac{1}{(1 + \frac{K_p}{[P]_{av}})} \]

where \[[P]_{av} = \text{avail RNAP conc} \approx 0.5 \sim 1 \ \mu \text{M} \]

\[K_p = N \cdot K_p / K_{ns} = 10^4 \sim 10^7 \ \text{nM} \]

⇒ for RNAP by itself, \[P \approx \frac{[P]_{av}}{K_p} \ll 1 \]

⇒ TF can modulate \(P \) or \(\alpha \)

2. Activation by recruitment

How does gene expression depend on [A]?

Strategy: [Shea & Ackers, 1985]

- assume \[[m^*] = \alpha \cdot \mathcal{P}([A],[P]) / \beta \]

- \(\mathcal{P} \) computed according to thermodynamics (assumes thermal equilibrium)

Recall for operator site alone: \[p_A = [A]_{tot} / ([A]_{tot} + K_A) \]

[will drop tilde and subscript “tot” from here on]

Total probability of RNAP binding to promoter in the presence of A:

\[\mathcal{P}([A],[P]) = \frac{W(0,1) + W(1,1)}{W(0,0) + W(0,1) + W(1,0) + W(1,1)} \]

where \(W(\sigma_A, \sigma_P) = \text{weight of} \)

- operator \(A \) is occupied (\(\sigma_A = 1 \)) or unoccupied (\(\sigma_A = 0 \))
- promoter is occupied (\(\sigma_P = 1 \)) or unoccupied (\(\sigma_P = 0 \))
Dependence of the total probability of RNAS-promoter binding on A:

\[P([A],[P]) = \frac{W(0,1) + W(1,1)}{W(0,0) + W(0,1) + W(1,0) + W(1,1)} \]

Form of \(W(\sigma_A, \sigma_P) \): let \(W(0,0)=1 \) (since only ratio of weights matter)

\[
\begin{align*}
W(0,1) &= \frac{[P]}{K_p} \cdot \frac{[A]}{K_A} \cdot \frac{([P]/K_p)}{([A]/K_A)} \\
W(1,1) &= \omega \cdot \left(\frac{[A]}{K_A} \right) \cdot \frac{([P]/K_p)}{([A]/K_A)} \\
W(1,0) &= \frac{[P]}{K_p} \\
W(0,0) &= 1
\end{align*}
\]

\(\omega = e^{-\frac{E_m}{k_BT}} \) ("cooperativity factor")

Check: \(P \) by itself, i.e., \([A]=0\),

\[P_P = \frac{W(0,1)}{W(0,0) + W(0,1)} = \frac{[P]/K_p}{1 + [P]/K_p} \]

\(P \) given \(A \), i.e., \([A]=\infty\),

\[P_{PA} = \frac{W(1,1)}{W(1,0) + W(1,1)} = \frac{\omega \cdot [P]/K_p}{1 + \omega \cdot [P]/K_p} \]

\(\Rightarrow \) promoter strength effectively increased \((K_p \rightarrow K_p/\omega) \)

Compact notation:

\[
W(\sigma_A, \sigma_P) = \left(\frac{[A]}{K_A} \right)^{\sigma_A} \cdot \left(\frac{[P]}{K_p} \right)^{\sigma_P} \cdot \omega^{\sigma_A \sigma_P}
\]

then

\[P([A],[P]) = \sum_{\sigma_A} \sum_{\sigma_P} W(\sigma_A, \sigma_P) = 1 \sum_{\sigma_A, \sigma_P} W(\sigma_A, \sigma_P) \]
\[P([A],[P]) = \frac{[P] / K_p + \omega \cdot ([A] / K_A) \cdot ([P] / K_p)}{1 + [A] / K_A + [P] / K_p + \omega \cdot ([A] / K_A) \cdot ([P] / K_p)} \]

• function of \([A]\) and \([P]\), parameterized by \(K_p, K_p, \omega\)

• typical parameter range:
 - promoters weak: \([P] / K_p \ll 1\)
 - TF concentration: \([A] = 1 \sim 1000\) nM
 - operators tunable: \(K_A = 1 \sim 1000\) nM
 - cooperativity weak: \(\omega = 10 \sim 100\) (typically \(\approx 20\))

→ want promoter activity as function of \([A]\)

• expected behavior
 - low state: for \([A] = 0\), \(P = \frac{[P] / K_p}{1 + [P] / K_p} \approx [P] / K_p \ll 1\)
 \(\Rightarrow P = P_{lo}\) as long as \(\omega \cdot [A] / K_A \ll 1\)
 - high state: for \([A] \gg K_A\), can consider \(A\) always bound to \(O_A\)
 \(\Rightarrow P_{hi} = \frac{\omega \cdot [P] / K_p}{1 + \omega \cdot [P] / K_p} \leq \omega\)

→ for maximal change ("capacity"):
 \(P_{hi} / P_{lo} = \omega \cdot \frac{1 + [P] / K_p}{1 + \omega \cdot [P] / K_p} \leq \omega\)

→ for maximal control, want weak promoter such that \(\omega \cdot [P] / K_p \ll 1\)

\[m^* = \alpha \cdot \beta \cdot \frac{m_0}{1 + \alpha \cdot [A] / K_A}, \quad m_0 = \frac{\alpha \cdot [P]}{\beta \cdot K_p} \]

Log-log slope ("sensitivity")

Max fold change ("capacity")
3. Repression by promoter occlusion

\[W(\sigma_R = 1, \sigma_P = 0) = [R] / K_R, \]
\[W(\sigma_R = 0, \sigma_P = 1) = [P] / K_P, \]
\[W(\sigma_R = 1, \sigma_P = 1) = 0 \]

[promoter and O_R cannot be simultaneously occupied]

\[P = \frac{W(0,1) + W(1,1)}{W(0,0) + W(0,1) + W(1,0) + W(1,1)} \]
\[= \frac{[P] / K_P}{1 + [P] / K_P + [R] / K_R} \approx \frac{1}{1 + [R] / K_R} \]

-- large [R] can provide arbitrarily strong repression according to model
-- "promoter leakage" provides the lower limit on \([m^*]\)
-- high TF conc often generate toxic side effects

4. Activation by catalysis (rather than recruitment)

\[\text{RNAP} + \text{promoter} \xrightarrow{\kappa_p} \text{RNAP} \cdot \text{promoter} \xrightarrow{\alpha} \text{RNAP} + \text{promoter} + \text{mRNA} \]

• mRNA level: \[\frac{\text{d}[m]}{\text{dt}} = \alpha \cdot P - \beta \cdot [m] \]

\[\text{tsx init rate} \quad \text{mRNA degradation} \quad \text{probability of promoter occupation by RNAP} \]

• steady-state mRNA level (measurable): \[[m^*] = \alpha \cdot P / \beta \]

for \(\sigma^{54}\) promoters, the rate of promoter opening catalyzed by activator
4. Activation by catalysis (rather than recruitment)

\[
\text{RNAP + promoter } \xrightarrow{K_p} \text{RNAP} \cdot \text{promoter} \xrightarrow{\alpha} \text{RNAP + promoter + mRNA}
\]

• mRNA level: \(\frac{d}{dt} [m] = \alpha \cdot \mathcal{P} - \beta \cdot [m] \)

\(\text{tsx init rate} \quad \text{mRNA degradation} \quad \text{probability of promoter occupation by RNAP} \)

• steady-state mRNA level (measurable): \([m^+] = \frac{\alpha \cdot \mathcal{P}}{\beta} \)

for \(\sigma^{54} \) promoters, the rate of promoter opening catalyzed by activator model:

\[
\alpha \Rightarrow \alpha_{\sigma_5} \\
\alpha \cdot \mathcal{P} \Rightarrow \sum_{\sigma_5} \alpha_{\sigma_5} \cdot W(\sigma_5, \sigma_\alpha = 1) / \sum_{\sigma_5, \sigma_\alpha} W(\sigma_5, \sigma_\alpha) \\
\Rightarrow [m^+] \approx m_0 \frac{1 + \frac{\omega \cdot [A]}{K_A}}{1 + \frac{[A]}{K_A}}, \quad m_0 = \frac{\alpha_{\sigma_5} \cdot [P]}{\beta K_p}
\]

⇒ same form as recruitment, but capacity increased by \(\alpha_1 / \alpha_0 \)
⇒ large fold change, but dedicated components

9

• “Advantages of the \(\sigma^{54} \) system:
 – very low basal rate for small \(\alpha_0 \)
 (activators need to consume ATP to catalyze open complex)
 – large capacity w/o need for large \(\omega \)
 (recall also that very large \(\omega \) can reduce capacity)
 – can activate from a long distance away (via DNA looping -- later)

• but in most bacteria species, there is at most one \(\sigma^{54} \) factor
 (compared to many families of \(\sigma^{70} \) factors)

• possible disadvantages?
 long distance activation can create unintentional cross talk unless different promoters are kept far apart (require long chromosomes) or separated by “insulating elements” (not available for prokaryotes)

10
5. Induction of TF

\[X + I \xrightarrow{k_+} XI \]

dissociation constant

\[K_i = \frac{[XI][X]}{[XI]} = \frac{k_+}{k_-} \]

\[[XI] = [XI]_{tot} + [X]_I = [X]_{tot} \frac{[I]}{[I] + K_i} \]

-usually \([I] \gg [X]_{tot}\), so \([I] = [I]_{tot}\)

will drop the subscript "tot" from here on

“activated TF” \(X^*\) = form of TF able to bind specifically to DNA

or able to activate RNAp

if \(X^* = XI\), then

\[[X^*] = [X]_{tot} \frac{[I]}{[I] + K_i} \]

if \(X^* = X\), then

\[[X^*] = [X]_{tot} \frac{K_i}{[I] + K_i} \]

often TF are dimers (\(X_2\))

\[K_1 = \frac{[X_2][I]}{[X_2][I]} \]

\[[X_2]_{tot} = [X_2] \left(1 + 2 \frac{[I]}{K_1} + \frac{[I]^2}{K_1 K_2} \right) \]

- non-cooperative (\(K_1 = K_2\)):

\[[X_2] = [X_2]_{tot} \left(1 + \frac{[I]}{K_1} \right) \]

- strongly cooperative (\(K_2 \ll K_1\)):

(e.g., binding of 2nd molecule much easier after 1st is bound)

\[[X_2] = [X_2]_{tot} \left(1 + \frac{[I]^2}{K_1 K_2} \right) \]

\[\Rightarrow \text{active TF could be } X_2, X_2I, \text{ or } X_2I_2 \]

Hill function
C. Cooperativity in Transcriptional Control

\[[m^*] = \alpha \cdot \mathcal{P} / \beta = m_0 \cdot \frac{1 + \omega \cdot [A] / K_A}{1 + [A] / K_A}, \quad m_0 = \frac{\alpha \cdot [P]}{\beta \cdot K_P} \]

- \(K_A \) tunable; \(\omega \) constrained; slope??
- need sensitivity > 1 for nontrivial circuits (later)

1. Dimerization: \(X^* = X_2 \)

\[[X]_{tot} = [X] + 2 \cdot [X_2] \]
\[= \sqrt{\kappa} [X_2] + 2 \cdot [X_2] \]

for \([X]_{tot} \ll \kappa \), \([X_2] = [X]_{tot}^2 / \kappa \)

\[\text{and} \quad [m^*] \approx \frac{1 + \omega \cdot [X_2] / K_A}{1 + [X_2] / K_A} \approx \frac{1 + \omega \cdot [X]_{tot}^2 / (\kappa K_A)}{1 + [X]_{tot}^2 / (\kappa K_A)} \]

- requires \(K_A \ll \kappa \)
- (strong site, weak dimer)
- most bacterial TFs: \(\kappa = 1 \sim 10 \text{ nM} \)
- \([X]_{tot} \sim [X_2] \)
- bacteria do not seem to use this source of cooperativity
- possible cost: need \([X]_{tot} \gg [X_2] \)
 i.e., lots of (useless) monomers
2. Synergistic activation

RNAp can simultaneously contact two TFs (e.g., Crp at positions -61.5 and -91.5)

statistical weight W for each configuration $\{\sigma_1, \sigma_2, \sigma_p\}$, with $q_X = [X]/K_X$

$$W_{\text{off}} = \begin{cases} W(0,0,0) = 1 \\ W(1,0,0) = q_{A1} \\ W(0,1,0) = q_{A2} \\ W(1,1,0) = q_{A1} \cdot q_{A2} \end{cases} \quad W_{\text{on}} = \begin{cases} W(0,0,1) = q_p \\ W(1,0,1) = \omega_1 \cdot q_{A1} \cdot q_p \\ W(0,1,1) = \omega_2 \cdot q_{A2} \cdot q_p \\ W(1,1,1) = \omega_3 \cdot q_{A1} \cdot q_{A2} \cdot q_p \end{cases}$$

3-body interaction: $\omega_3 = \omega_1 \cdot \omega_2$ (independent); $\omega_3 > \omega_1, \omega_2$ (pre-bending by Crp)

tsx level: $[m^*] = m_0 \cdot P([A])$

$$P([A]) = \frac{W_{\text{on}}}{W_{\text{on}} + W_{\text{off}}} = \frac{q_p \cdot (1 + \omega_1 q_{A1} \cdot (1 + \omega_2 q_{A2}) + (\omega_3 - \omega_1 \omega_2) \cdot q_{A1} q_{A2})}{(1 + q_{A1}) \cdot (1 + q_{A2})}$$

• for $\omega_3 \approx \omega_1, \omega_2$ (no interaction)

$$P([A]) = q_p \cdot \frac{1 + \omega_1 q_{A1}}{1 + q_{A1}} \cdot \frac{1 + \omega_2 q_{A2}}{1 + q_{A2}}$$

capacity of response = ω_1, ω_2

sensitivity = 2

effective Hill form with Hill coeff 2

\Rightarrow effective Hill form with Hill coeff 2

• for $\omega_3 > \omega_1, \omega_2$ (positive cooperativity)

capacity of response = ω_3

a great way to boost capacity & sensitivity?

but not widely seen in E. coli
3. Cooperative activation

widely seen in bacteria; e.g., P_{RM} promoter of phage λ (A = CI)

statistical weight \(W \) for each configuration \(\{\sigma_1, \sigma_2, \sigma_p\} \), with \(q_X = [X]/K_X \)

\[
W_{\text{eff}} = \begin{cases}
W(0,0,0) = 1 \\
W(1,0,0) = q_{A_1} \\
W(0,1,0) = q_{A_2} \\
W(1,1,0) = \omega_{12} \cdot q_{A_1} \cdot q_{A_2} \\
\end{cases} \\
\frac{W_{\text{on}}}{W_{\text{off}}} = q_p \cdot \frac{1 + q_{A_1} + \omega_{2p} q_{A_2} + \omega_{12} \omega_{2p} q_{A_1} q_{A_2}}{1 + q_{A_1} + q_{A_2} + \omega_{12} q_{A_1} q_{A_2}}
\]

\[= q_p \cdot \frac{1 + \left(\frac{K_{A_2}}{K_{A_1}} \right) [A] + \frac{K_{A_2}}{K_{A_1}} \frac{[A]^2}{K_{A_1} K_{A_2}}}{1 + \left(\frac{K_{A_2}}{K_{A_1}} \right) [A] + \frac{K_{A_2}}{K_{A_1}} \frac{[A]^2}{K_{A_1} K_{A_2}}}\]
3. Cooperative activation

widely seen in bacteria; e.g., \(P_{\text{RM}} \) promoter of phage \(\lambda \) (\(A = \text{CI} \))

- parameter dependence? (universal problem for q-bio)
 - \(K_{A1} = \infty \) (i.e., remove \(O_{A1} \) site)

\[
P([A]) = q_p \cdot \frac{1 + \omega_{2p}[A] / K_{A2}}{1 + [A] / K_{A2}}
\]

\[-K_{A1} = 0 \text{ (i.e., fix } A \text{ to } O_{A1} \text{ site)} \]

\[
P([A]) = q_p \cdot \frac{1 + \omega_{12}\omega_{2p}[A] / K_{A2}}{1 + \omega_{12}[A] / K_{A2}}
\]

- intermediate \(K_{A1} \): capacity fixed (\(\omega_{2p} \)); can at most have a steeper slope

\[
\ln P \quad \omega_{2p} \quad \ln([A])
\]

\[
K_{A2}/\omega_{12} \quad K_{A2}
\]

\[
K_{A1}/\omega_{12}
\]

\[\text{parameters for } P_{\text{RM}} \text{ promoter:}
\]

- \(\omega_{12} \approx 100, \omega_{2p} \approx 10, \)
- \(K_{A2} / K_{A1} \approx 25 \)

- close to the optimal range
- sensitivity \(\approx 0.93 \) limited by \(\omega_{2p} \)
 (single-site sensitivity: 0.54)

- need to increase both \(\omega_{12} \) and \(\omega_{2p} \) for more sensitivity
- much larger \(\omega_{12} \) may be a problem for TF-DNA dynamics
- is a slightly larger sensitivity really significant physiologically??
4. Cooperative repression

e.g., P_R promoter of phage λ

\[(R = Cl)\]

statistical weight W for each configuration \{\(\sigma_2, \sigma_1, \sigma_2\)\}, with $q_X = [X]/K_X$

\[
W_{\text{off}} \begin{cases}
W(0,0,0) &= 1 \\
W(1,0,0) &= q_{R2} \\
W(0,1,0) &= q_{R1} \\
W(1,1,0) &= \omega_{12} \cdot q_{R1} \cdot q_{R2}
\end{cases} \quad W_{\text{on}} \begin{cases}
W(0,0,1) &= q_p \\
W(1,0,1) &= 0 \\
W(0,1,1) &= 0 \\
W(1,1,1) &= 0
\end{cases}
\]

\[
\mathcal{P}(R) = \frac{W_{\text{on}}}{W_{\text{off}}} = q_p / \left(1 + q_{R1} + q_{R2} + \omega_{12} q_{R1} q_{R2}\right)
\]

\[
= q_p / \left[1 + (K_{R1}^{-1} + K_{R2}^{-1}) \cdot [R] + \omega_{12} [R]^2 / (K_{R1} K_{R2})\right]
\]

\[
= q_p / \left[1 + \omega_{12} [R]^2 / (K_{R1} K_{R2})\right]
\]

if $\omega_{12} \gg \left(\sqrt{K_{R2} / K_{R1}} + \sqrt{K_{R1} / K_{R2}}\right)^2 = K_{\text{larger}} / K_{\text{smaller}}$

for phage λ, $O_{A1} = O_{R2}$ and $O_{A2} = O_{R1}$ \(\Rightarrow \omega_{12} \approx 100; K_{R1} / K_{R2} \approx 25\)

4. Cooperative repression

e.g., P_R promoter of phage λ

\[(R = Cl)\]

statistical weight W for each configuration \{\(\sigma_2, \sigma_1, \sigma_2\)\}, with $q_X = [X]/K_X$

\[
W_{\text{off}} \begin{cases}
W(0,0,0) &= 1 \\
W(1,0,0) &= q_{R2} \\
W(0,1,0) &= q_{R1} \\
W(1,1,0) &= \omega_{12} \cdot q_{R1} \cdot q_{R2}
\end{cases} \quad W_{\text{on}} \begin{cases}
W(0,0,1) &= q_p \\
W(1,0,1) &= 0 \\
W(0,1,1) &= 0 \\
W(1,1,1) &= 0
\end{cases}
\]

Note that even if $\omega_{12} = 1$ (i.e., no interaction)

\[
\mathcal{P}([R]) = \frac{q_p}{\left(1 + [R] / K_{R1}\right) \cdot \left(1 + [R] / K_{R2}\right)}
\]

\[
= \frac{q_p}{[R]^2 / (K_{R1} K_{R2})} \quad \text{for} \quad [R] \gg K_{R1} + K_{R2}
\]

\(\Rightarrow\) cooperative repression does not require interaction

c.f. “collaborative competition” (Jon Widom)
5. Transcriptional control via DNA looping

- discovered in the study of araBAD regulation (Schleif, 1984)
- also involved in the repression of lac, deo, mel, gal, … operons
- activation of σ^{54}-promoters (e.g., glnALG operon)

Consider regulation of the lac promoter (P_{lac})

- Lac repressor = dimer of dimers
 - each dimer unit can bind specifically to operator
 - the two dimeric units are (approximately) uncoupled
 - i.e., can bind DNA independently of the other unit
 - enables DNA looping

\[W_{on} = q_p, \quad W_{off} = 1 + 2[R] / K_1 \equiv 1 + 2q_1 \]

\[\Rightarrow P([R]) = \frac{W_{on}}{W_{off}} = \frac{q_p}{1 + 2q_1} \]

- include O1 and O3 (dissoc constants K_1 and K_3)

\[W_{off} = O3 + O1 + O3 + O1 + O3 + O1 \]

\[= 1 + 2q_1 + 2q_3 + 4q_1q_3 + 2C_L \frac{[R]}{K_1K_3} \quad [\text{note: } C_L \text{ has dimension of conc}] \]

\[W_{on} = q_p + 2q_1q_3 \]
• include O1 and O3 (dissoc constants K_1 and K_3)

$$P([R]) = q_p \frac{1 + 2q_3}{(1 + 2q_1, (1 + 2q_1) + \left(\begin{array}{c} C_L \cr K_3K_1 \end{array}\right)}$$

What is C_L?

-- suppose O1 and O3 are not linked

statistical weight

$$\text{conc of O1 O3 in the same config but without R}$$

C_L gives probab. that two operators are in the required config by chance; or the effective conc seen at one site given the other site is occupied by R

-- next consider two operators linked by the DNA backbone:

$$\mathcal{L}_{13} = 92 \text{ bp} \approx 30 \text{ nm}$$

crude approximation 1: “tether” two operators with flexible linker of length \mathcal{L}

$$C_{113} \approx \frac{1}{(4\pi/3 \mathcal{L}_{13}^3)} \approx 10^4 \text{ nM} \quad \text{for } \mathcal{L}_{12} = 400 \text{ bp} \approx 130 \text{ nm}, \, C_{112} \approx 10^2 \text{ nM}$$

$$\text{for } \mathcal{L} = 1000 \text{ bp}, \, C_L \approx 6 \text{ nM, negligible}$$

crude approximation 2: linker = flexible polymer of persistence length L_p

for $\mathcal{L} \gg L_p$, $L_p = 50 \text{ nm} = 150 \text{ bp}$

displacement of RW given by

$$P(r) = \left(2 \pi r^2\right)^{3/2} \exp\left[-r^3 / 2r^3\right], \quad \text{where } r^2 \sim L_p^2 \cdot (\mathcal{L} / L_p) = L_p \cdot \mathcal{L}$$

$$\Rightarrow C_L = P(r = 0) = 1/(2\pi L_p^3 \mathcal{L}^3)^{3/2} \quad \text{(increases more slowly with } \mathcal{L})$$

for $\mathcal{L}_{12} = 400 \text{ bp} \approx 130 \text{ nm}, \, C_{112} = 120 \text{ nM}$

$\mathcal{L} = 1000 \text{ bp, } C_L = 30 \text{ nM}$

for small \mathcal{L}s, need to consider the details of DNA bending
• How should DNA looping be used?

\[
\mathcal{P}(\{R\}) \approx q_p \frac{1 + 2q_3}{(1 + 2q_1)(1 + 2q_3) + 2C_L \frac{[R]}{K_1 K_3}}
\]

repression factor (r.f.) \(= \frac{\mathcal{P}(0)}{\mathcal{P}(\{R\})} = 1 + 2q_1 + \frac{C_L}{K_1} \frac{2q_3}{1 + 2q_3} \)

for \(q_3 \gg 1 \) \(([R] \gg K_3) \),

\[
\text{r.f.} \approx 1 + \frac{2[R] + C_L}{K_1}
\]

for \(q_3 \ll 1 \) \(([R] \ll K_3) \),

\[
\text{r.f.} \approx 1 + \left(1 + \frac{C_L}{K_3} \right) \cdot \frac{2[R]}{K_1}
\]

for large fold-repression, want

\[C_L \gg K_3 \gg [R] \gg K_1 \]

no DNA looping:

\[1 + (2[R]/K_1) \]

expt: \([R] \approx 10 \text{ nM}, K_1 \approx 0.5 \text{ nM}, K_3 \approx 250 \text{ nM}\)

ref: Oehler et al, 1990, 1992

Vila & Leibler, 2003

r.f. with loop \(\approx 400 \)

r.f. w/o loop \(\approx 20 \)

\[C_L/K_3 \approx 20 \Rightarrow C_L \approx 5000 \text{ nM} \]

direct determination: \(C_L \approx 3000 \text{ nM} \)

further enhancement (~5x) due to Crp-mediated DNA bending

weak O3 needed to prevent “squelching”