Growth-rate dependence of gene expression

- # promoter/gene: $N_{g,i}$
- # mRNA: $N_{mR,i}$
- # proteins: $N_{P,i}$
- steady-state protein conc

- follow the growth dependence of each parameter
- unravel the ‘conspiracy’ of global control to ensure $\sum_i [P_i] \approx \text{const.}$

$$[g_i] = \frac{N_{g,i}}{V}$$
$$[mR_i] = \frac{N_{mR,i}}{V}$$
$$[P_i] = \frac{N_{P,i}}{V}$$

\[\frac{d}{dt}[mR_i] = \alpha_i [g_i] - \delta_i [mR_i] \]
\[\frac{d}{dt}[P_i] = \eta_i [mR_i] - \lambda [P_i] \]

Summary:

\[\frac{d}{dt}[P_i] = \eta_i [mR_i] - \lambda [P_i] \]
\[\psi_i \equiv [mR_i]/[mR], \phi_i \equiv [P_i]/[P] \]
\[\eta_i \cdot \psi_i [mR] = \lambda \phi_i [P] \]
\[\psi_i \approx \phi_i \]
\[\eta_i \approx \bar{\eta} \quad \text{&} \quad \bar{\eta} \cdot [mR] \approx \lambda [P] \]

by setting tsl init seq

\[\bar{\eta} \approx \frac{\epsilon}{0.22 \ell} \quad \text{or} \quad 200 \text{ nt} \]

- coordination of tsl init & elong

\[\lambda [P] \ell_p = \epsilon \cdot [Rb^*] \]
\[\bar{\eta} \cdot [mR] \approx \frac{\epsilon}{\ell_p} [Rb^*] \]

\[[mR] \approx 0.22 \cdot [Rb^*] \]

- mechanism ?

\[\ell_p \approx \frac{\epsilon}{0.22 \ell} \]

- \[\bar{\eta} \approx \frac{\epsilon}{0.22 \ell} \]

- Rb elongation speed (nt/s)

\[\epsilon = - \frac{\text{Rb elongation speed}}{\text{cell volume}} \]

\[d = \frac{\epsilon}{\bar{\eta}} \]

Graph A:

- [mRNA] vs. growth rate (1/h)
- [Rb] vs. active ribosomes
- [Rb] vs. [Rb]_ext
mRNA turnover (δ_i)

\[
\begin{align*}
\frac{d}{dt}[mR_i] &= \alpha_i[g_i] - \delta_i[mR_i] \\
\frac{d}{dt}[P_i] &= \eta_i[mR_i] - \lambda [P_i]
\end{align*}
\]

- stop initiation of transcription at 't = 0' (rifampicin)
- measure mRNA abundance for $t > 0$ (RNA-seq)
- fit to delayed exponential decay:
 \[[mR_i](t) = [mR_i](0) \cdot e^{-\delta_i(t-t_0)} \]
- note that only relative abundance required

\[
\begin{align*}
\text{glucose} &\quad \lambda = 0.96/h \\
\text{mannose} &\quad \lambda = 0.34/h
\end{align*}
\]

mRNA turnover (δ_i) weakly dependent on gene and condition

\[
\begin{align*}
\frac{d}{dt}[mR_i] &= \alpha_i[g_i] - \delta_i[mR_i] \\
\frac{d}{dt}[P_i] &= \eta_i[mR_i] - \lambda [P_i]
\end{align*}
\]

\[
\begin{align*}
\delta_i &\approx \bar{\delta} \equiv \sum \psi_i \approx 0.5/min \\
\Rightarrow &\quad \text{GR-dependence of total mRNA abundance must come from mRNA synthesis (α_i)}
\end{align*}
\]

- stop initiation of transcription at 't = 0' (rifampicin)
- measure mRNA abundance for $t > 0$ (RNA-seq)
- fit to exponential decay:
 \[[mR_i](t) = [mR_i](0) \cdot e^{-\delta_i t} \]
- note that only relative abundance required
mRNA turnover (δ_i)

$$\begin{align*}
\frac{d}{dt} [mR_i] &= \alpha_i [g_i] - \delta_i [mR_i] \\
\frac{d}{dt} [P_i] &= \eta_i [mR_i] - \lambda [P_i]
\end{align*}$$

detour:

- huge burstiness typical: $\eta_i/\delta_i \sim 20$
- post-tsx regulation

(change in mRNA turnover: signature of sRNA and protein regulation)
mRNA turnover (δ_i) weakly dependent on gene and condition

\[
\begin{align*}
\frac{d}{dt}[mR_i] &= \alpha_i[g_i] - \delta_i[mR_i] \\
\frac{d}{dt}[P_i] &= \eta_i[mR_i] - \lambda [P_i]
\end{align*}
\]

- stop initiation of transcription at $t = 0$ (rifampicin)
- measure mRNA abundance for $t > 0$ (RNA-seq)
- fit to exponential decay:
 \[[mR_i](t) = [mR_i](0) \cdot e^{-\delta_i t} \]
- note that only relative abundance required

focus on mRNA synthesis (α_i):

\[
\begin{align*}
\frac{d}{dt}[mR_i] &= \alpha_i[g_i] - \delta_i[mR_i] \\
\frac{d}{dt}[P_i] &= \eta_i[mR_i] - \lambda [P_i]
\end{align*}
\]

steady-state: $\alpha_i[g_i] = \delta_i[mR_i]$

total mRNA synthesis flux:

\[J_{mR} \equiv \Sigma_i \alpha_i[g_i] = \bar{\delta} \cdot [mR] \]

constancy of $\bar{\delta}$: change in $[mR]$ from J_{mR}

\[\text{total mRNA synthesis flux tuned to match the translational capacity} \]
focus on mRNA synthesis (α_i):

$$\frac{d}{dt}[mR_i] = \alpha_i[g_i] - \delta_i[mR_i]$$

$$\frac{d}{dt}[P_i] = \eta_i[mR_i] - \lambda [P_i]$$

steady-state: $\alpha_i g_i = \delta_i mR_i$

total mRNA synthesis flux:

$$J_{mR} = \sum_i \alpha_i g_i = \delta \cdot [mR]$$

model of transcriptional regulation:

$$G_i([A], [B], ...) \frac{[RNAP^*]}{K_i} k_{i,0}$$

RNAP recruitment rate $\rightarrow R_i([A], [B], ...)$

$$J_{mR} = \sum_i \alpha_i g_i = [RNAP^*] \sum_i g_i R_i$$

- RNAP components GR-independent
- anti-σ^D factor Rsd upregulated as growth slows down

\Rightarrow Rsd titrates the pool of available RNAP to match tsx output with tsl capacity

\Rightarrow Rsd expression significantly affects the rate of total mRNA synthesis

\Rightarrow Δrsd strain exhibits growth defect in proportion to its expression level in WT
focus on mRNA synthesis (α_i):
\[
\begin{aligned}
\frac{d}{dt}[mR_i] &= \alpha_i[g_i] - \delta_i[mR_i] \\
\frac{d}{dt}[P_i] &= \eta_i[mR_i] - \lambda [P_i]
\end{aligned}
\]
steady-state: $\alpha_i[g_i] = \delta_i[mR_i]$

Summary
$\alpha_i[g_i] = [RNA反应][g_i]\cdot R_i = \bar{\delta} \psi_i[mR_i]$
\[
\Rightarrow \psi_i \propto [g_i] \cdot R_i
\]
\[
\Rightarrow \phi_i \approx \psi_i \propto [g_i] \cdot R_i
\]
\[
\Rightarrow [P_i] \propto [g_i] \cdot R_i
\]

i.e., protein conc set “directly” by transcriptional regulation (weighted by gene copy #)
independent of growth changes

constitutive expression ($R_i=$const)
\[
\Rightarrow \text{expect } [P_i] \propto [g_i] \propto e^{-x\cdot \lambda T_c}
\]

\[
\begin{array}{c}
\text{growth rate (1/h)} \\
0 & 0.5 & 1
\end{array}
\]
\[
\begin{array}{c}
P_i \text{ (in mL)} \\
0 & 0.5 & 1
\end{array}
\]

- $Ptet:gfp$ at oriC ($x_i = 0$)
- $Ptet:gfp$ at terC ($x_i = 1$)

$\lambda T_c \approx \frac{2}{3} \cdot (0.3 + \lambda T_0)$, $T_0 \approx 1$ h

focus on mRNA synthesis (α_i):
\[
\begin{aligned}
\frac{d}{dt}[mR_i] &= \alpha_i[g_i] - \delta_i[mR_i] \\
\frac{d}{dt}[P_i] &= \eta_i[mR_i] - \lambda [P_i]
\end{aligned}
\]
steady-state: $\alpha_i[g_i] = \delta_i[mR_i]$

Summary
$\alpha_i[g_i] = [RNA反应][g_i]\cdot R_i = \bar{\delta} \psi_i[mR_i]$
\[
\Rightarrow \psi_i \propto [g_i] \cdot R_i
\]
\[
\Rightarrow \phi_i \approx \psi_i \propto [g_i] \cdot R_i
\]
\[
\Rightarrow [P_i] \propto [g_i] \cdot R_i
\]

i.e., protein conc set “directly” by transcriptional regulation (weighted by gene copy #)
independent of growth changes

Global survey of relation between $[P_i]$ and R_i
focus on mRNA synthesis (α_i):

$$
\begin{align*}
\frac{d}{dt}[m_{R_i}] &= \alpha_i[g_i] - \delta_i[m_{R_i}] \\
\frac{d}{dt}[p_i] &= \eta_i[m_{R_i}] - \lambda [p_i]
\end{align*}
$$

steady-state: $\alpha_i[g_i] = \delta_i[m_{R_i}]$

Summary

$$
\alpha_i[g_i] = [RNA^{\ast}][g_i]R_i = \delta \psi_i[m_{R_i}]
\Rightarrow \psi_i \propto [g_i] \cdot R_i
\Rightarrow \phi_i \approx \psi_i \propto [g_i] \cdot R_i
\Rightarrow [p_i] \propto [g_i] \cdot R_i
$$

i.e., protein conc set “directly” by transcriptional regulation
(weighted by gene copy #) independent of growth changes

In general,

$$
\phi_i \approx \psi_i \approx \frac{[g_i] \cdot R_i}{\sum_i [g_i] R_i}
$$

“quantitative central dogma”

$\Rightarrow [p_i] \propto [g_i] \cdot R_i$ requires fixed $\sum_i [g_i] R_i$

\Rightarrow approximately obtained for WT cells

\Rightarrow not always true for mutants

Summary

$\alpha_i[g_i] = [RNA^{\ast}][g_i]R_i = \delta \psi_i[m_{R_i}]
\Rightarrow \psi_i \propto [g_i] \cdot R_i
\Rightarrow \phi_i \approx \psi_i \propto [g_i] \cdot R_i
\Rightarrow [p_i] \propto [g_i] \cdot R_i
$

i.e., protein conc set “directly” by transcriptional regulation
(weighted by gene copy #) independent of growth changes

Carbon limitation

```
carbon source -> keto acids <- amino acids
```

```
cAMP <- ppGpp
```

Other genes catabolic genes ribosomal genes

47