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ABSTRACT
The score statistics of a recently introduced ‘hybrid align-

ment’ algorithm is studied in detail numerically. An exten-
sive survey across the 2216 models of protein domains
contained in the Pfam v5.4 database (Bateman et al., Nu-
cleic Acids Res., 28, 263–266, 2000) verifies the theoreti-
cal predictions: For the position-specific scoring functions
used in the Pfam models, the score statistics of hybrid
alignment obey the Gumbel distribution, with the key Gum-
bel parameter λ taking on the asymptotic value 1 univer-
sally for all models. Thus, the use of hybrid alignment elim-
inates the time-consuming computer simulations normally
needed to assign p-values to alignment scores, freeing the
users to experiment with different scoring parameters and
functions. The performance of the hybrid algorithm in de-
tecting sequence homology is also studied. For protein se-
quences from the SCOP database (Murzin et al., J. Mol.
Biol., 247, 536–540, 1995) using uniform scoring functions,
the performance is found to be comparable to the best of
the existing methods. Preliminary results using the PfamA
database suggest that the hybrid algorithm achieves sim-
ilar performance as existing methods for position-specific
scoring systems as well. Hybrid alignment is thereby es-
tablished as a high performance alignment algorithm with
well-characterized, universal statistics.
Contact: yyu@fau.edu

1 INTRODUCTION
Due to the rapid growth of the DNA and protein databases,
computer-assisted sequence alignment tools have become
an integral part of modern molecular biology. Automated
tools such as BLAST (Altschul et al., 1990, 1997) and
FASTA (Pearson, 1988) align each query sequence with
those in the database and quantify their mutual similarity
by an alignment score and a p-value. The latter is the
probability of obtaining a score of the observed value or
higher ‘by chance’, and is generally a more meaningful

∗Present address: Department of Physics, The Ohio State University, 174
West 18th Avenue, Columbus, OH 43210-1106, USA

measure of the significance of an alignment than the
alignment score itself. The usefulness of the p-value is
of course dependent upon the choice of null models. One
common choice is simply a random amino acid sequence
drawn according to some fixed background frequencies
p(a) for amino acid a. This is for example the approach
adopted by BLAST, as well as by more specific tools such
as HMMer (Eddy et al., 1995; Eddy, 1995).

Theoretical understanding of the score statistics for
this null model is well developed for local alignment
algorithms that forbid insertions and deletions (or indels),
the so-called ‘gapless’ alignments. For such alignments,
the null statistics of the alignment score S is shown (Karlin
and Altschul, 1990) to follow the Gumbel distribution
(Gumbel, 1958)

Pr(S < x) = exp(−K M Ne−λx ) (1)

in the limit that the lengths M and N of the aligned se-
quences are large. Moreover, there exist explicit formulae
to compute the two Gumbel parameters λ and K , for a
large class of substitution matrices each containing over
200 parameters, and for arbitrary amino acid background
frequencies p(a).

Unfortunately, gapless alignment is not sensitive
enough for detecting distant homologs where insertions
and deletions with respect to the query sequence are an-
ticipated (Brenner et al., 1998). For alignment algorithms
which allow gaps, e.g. the Smith–Waterman algorithm
(Smith and Waterman, 1981) and BLAST (Altschul et al.,
1997), the null statistics are known empirically to obey
Gumbel statistics as well (Smith et al., 1985; Collins et
al., 1988; Mott, 1992; Waterman and Vingron, 1994a,b;
Altschul and Gish, 1996; Olsen et al., 1999). However,
the dependence of the two Gumbel parameters λ and K on
the hundreds of scoring parameters (including gap costs)
are not known. There are some recent theoretical devel-
opments in understanding gapped alignment statistics, for
special scoring functions (Bundschuh, 2000), or when
only a few gaps are allowed (Siegmund and Yakir, 2000);
there also exist heuristics applicable to the regime of large
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gap costs (Mott and Tribe, 1999; Mott, 2000). However,
as these developments are still not sufficiently general for
real applications, the null statistics is usually determined
by large simulations. Because the simulations are costly
(BLAST determines the null statistics by aligning 24 000
pairs of random sequences of length 1000 for each set
of scoring parameters, one is limited to doing alignment
with a small set of pre-selected scoring parameters and
also with fixed amino acid frequencies p(a), regardless of
the actual composition of the query sequence.

It has been realized for some time now that more
sensitivity can be gained if one uses position-specific
scoring functions based on other information, e.g. multiple
alignments, or the 3D protein structure. This is the strategy
implemented in the existing high-performance tools such
as PSI-BLAST (Altschul et al., 1997), HMMer (Eddy et
al., 1995; Eddy, 1995) and SAM (Karplus et al., 1998).
Unfortunately, the null statistics is even less understood
for alignment with position-dependent scoring functions.
For this reason, PSI-BLAST limits itself to uniform
gap cost and only allows the substitution scores to be
position-specific†, thereby potentially compromising the
performance. HMMer does allow for position-specific
gaps and evaluates the null statistics by simulating each
of the more than 2000 protein domain models it uses,
followed by fits to Gumbel distributions. However, we will
show below that the null statistics of HMMer is actually
not of the Gumbel form, hence making the reported
statistics inaccurate. SAM adopts the probabilistic hidden
markov models which can be viewed as probabilistic local
alignment (Bucher and Hofmann, 1996) with position-
specific scoring functions. Yet, the null statistics for
probabilistic local alignment is not well understood either.
Empirically, the score distribution is found to exhibit a
form that is not described by any simple known function
over the regime examined (Yu and Hwa, 2001).

To overcome the null statistics problem, (Yu and
Hwa, 2001) recently proposed to modify the alignment
algorithm in order to make the statistics tractable. They
introduced a new algorithm which is a hybrid of Smith–
Waterman and probabilistic local alignment. It was pre-
dicted that the null statistics of the hybrid alignment obeys
the Gumbel form, with the important Gumbel parameter
λ taking on a fixed value of 1 for a wide range of scoring
functions/parameters, including the position-specific gap
costs, and for arbitrary background amino acid frequen-
cies p(a). The prediction was verified numerically for
certain uniform (i.e. position-independent) scoring func-
tions with affine gap cost. Here, we extend the study to
position-specific scoring functions. Using the 2216 mod-
els of protein domains in the Pfam v5.4 database (Bateman

† Note that the effect of the position-specific substitution score in gapless
alignment is well-understood from the theory of Karlin and Altschul (1990).

et al., 2000), we show that the null statistics of hybrid
alignment still obeys Gumbel statistics with asymptotic
λ = 1 as predicted. We further evaluate the performance
(i.e. sensitivity) of the hybrid alignment, using protein
sequences from the SCOP database (Murzin et al., 1995;
Brenner et al., 1996). We find the performance of the
hybrid alignment in the SCOP database to be similar to the
best of the existing algorithms that use uniform scoring
functions. Preliminary results on a sequence model from
the Pfam database suggest that the performance of hybrid
alignment also compares favorably to existing algorithms
for position-specific scoring systems. We thereby es-
tablish that the hybrid alignment is a high-performance
alignment algorithm with well-characterized null statis-
tics. Since hybrid alignment drastically reduces the time
needed to assess the statistical significance for arbitrary
user-specified scoring functions‡, it allows the users to
experiment with different scoring functions (in particular
gap functions) and evaluate their performance in real time.
It also allows adaptation of the score statistics to account
for the amino acid composition of individual query
sequences. A preliminary BLAST implemenation of the
hybrid algorithm is available upon request to the authors.

In what follows, we will first describe the null statistics
study in which we apply hybrid alignment to the Pfam
models. Then, we present the performance evaluation.
We will give the details of the hybrid algorithm for both
the uniform and position-specific scoring functions in
Appendix A.

2 SCORE STATISTICS FOR POSITION-
SPECIFIC SCORING FUNCTIONS

In this section, we examine numerically the predicted
universality of the null statistics of hybrid alignment for
biologically relevant position-specific scoring functions.
Specifically, we use the 2216 models of protein domains
contained in the Pfam database v5.4 (Bateman et al.,
2000). Each of these models is constructed carefully,
starting from a multiple alignment of some manually
chosen core members of each protein family. The Pfam
models are cast in terms of hidden Markov models, which
specify the probability of substitution, insertion, and dele-
tion at each ‘node’ of the model. Taking the logarithm of
these probabilities converts them into insertion, deletion,
and substitution scores. These scores strongly depend on
the position within the model and reflect the functional
context of the corresponding amino acid. For example,
nodes with very negative substitution scores correspond
to the highly conserved regions, i.e. they require specific
amino acids, and the protein exterior is characterized by
nodes with low insertion/deletion costs.

‡ The other Gumbel parameter K can be efficiently determined once λ is
known; see Appendix B.
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Fig. 1. The score distributions (staircases) of (a) hybrid alignment and (b) the sum-of-all-paths algorithm of HMMer, and their respective
best Gumbel fits (solid lines). The position-specific scoring function used is the EGF protein family profile according to Pfam. The score
distributions are obtained via aligning 300 000 random sequences of length 300 against the EGF profile which has a length of 45 nodes.

We first want to determine the form of the score
distribution very precisely. Since this is a very challenging
task numerically, we choose below the EGF protein family
for a detailed study. We generate 300 000 random amino
acid sequences each of length 300, according to the amino
acid background frequencies specified in the EGF model.
Each of the random sequences is then aligned with the
EGF model using the position-specific hybrid algorithm
as specified in Appendix A [Equation (17) augmented by
Equations (3)–(5), and Table 2]. The resulting alignment
score S is recorded for each pair. The score distribution
D(S) is obtained by normalizing the histogram of the
300 000 alignment scores, and is shown as the staircase
in Figure 1(a). The empirical distribution is then fitted
to the Gumbel form Equation (1) using the maximum
likelihood method (Eddy, 1997). The result, shown as the
smooth line in Figure 1(a), clearly describes the empirical
distribution very well. The Gumbel parameters extracted
from the fit are λ = 1.0085±0.005 and K = 0.294. Thus,
our prediction that the score distribution is of the Gumbel
form with λ = 1 (up to small corrections for the sequence
length to be discussed in Appendix B) is verified for this
particular model.

Incidentally, we note that a similar study using the sum-
of-all-paths version of the algorithm of HMMer (Eddy
et al., 1995; Eddy, 1995) produces a score distribution
(staircase in Figure 1(b)) which deviates significantly from
the best Gumbel fit (thick solid line). Deviations of similar
magnitudes have also been observed for a number of other
models examined, including the rrm, ig, and some 7tm
families. The best Gumbel fit overestimates the probability
tails of some of these models and underestimates others.
At present, a systematic understanding of the HMMer
score statistics is lacking.

We ideally want to perform such detailed characteriza-
tions for all of the more than 2000 models in the Pfam
database. However, this is not feasible within a reason-
able amount of computer time. Thus, we take it for granted
from the example of the EGF family shown above and a
number of other families (not shown) that the shape of
the distribution is always of the Gumbel form. What we
can do within a reasonable amount of time is determining
the Gumbel parameter λ for all the Pfam models. To this
end, we align each Pfam model to only 5000 random se-
quences (of length 325) using the hybrid algorithm. Again,
the score distribution obtained is fitted to the Gumbel form
in the same way, and a λ value is extracted for each Pfam
model. The smaller number of random sequences used re-
duces the accuracy on the λs to about ±1% but it allows us
to survey the entire Pfam database. A histogram of these
λ values obtained each of the 2216 Pfam v5.4 database is
shown in Figure 2. Clearly, the distribution of λ values is
peaked at λ = 1 as predicted, with a mean of 1.014 and a
standard deviation of 0.036. In comparison, a similar study
using HMMer (with forced Gumbel fits) finds λ to lie in a
wide range, between 0.02 and 0.99, with a mean value of
0.33 and a standard deviation of 0.23.

The small deviation from λ = 1 shown in Figure 2
has several possible sources: One is simply due to the
accuracy of the fit given the small sample size of 5000
random sequences. The other is a systematic shift due to
the finite lengths of the sequences and the models. (Recall
that the Gumbel distribution strictly holds only in the limit
of very long sequences.) The systematic sequence length
dependence can also be understood (Yu and Hwa, 2001).
Correcting for the sequence and model length is expected
to produce an even narrower distribution of the λs and will
be discussed elsewhere.
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Fig. 2. Histogram of the Gumbel parameter λ for the hybrid
alignment of random sequences to the 2216 Pfam models. The λ’s
are strongly peaked around 1 as predicted theoretically with a mean
of 1.014 and a standard deviation of 0.036.

But even with this deviation of several percent, the
advantage of hybrid alignment becomes obvious: In order
to assign p-values to alignment scores computed by
programs such as HMMer, the moderately expensive (time
consuming) simulations presented above are necessary
for every new or updated family. On the contrary, with
hybrid alignment we can simply use a Gumbel distribution
with λ = 1, without the need of much simulation. (The
other Gumbel parameter K can be easily determined once
λ is known; see Appendix B.) This advantage becomes
especially useful when one is trying out parameters in the
model-building phase and will be elaborated on elsewhere.

3 PERFORMANCE EVALUATION
Having a well-characterized null statistics saves the com-
putation time otherwise necessary to obtain the statistics.
However, it does not in itself make an algorithm useful.
For example, the statistics of gapless alignment is well
known, yet for better performance, e.g. to detect weakly
related sequences, it is necessary to include gaps. What
is desired is a high-performance alignment algorithm
which has well-characterized statistics. Evaluating the
performance of an algorithm properly is not a simple
matter, because the performance does not depend only on
the algorithm used but also on the appropriateness of the
scoring functions, and choices of the test set and the ‘gold
standard’. In this section, we evaluate the performance
of the hybrid algorithm, first using a uniform scoring
function and then one example of a position-specific
scoring function. The ‘gold standard’ used is the SCOP
classification (Murzin et al., 1995; Brenner et al., 1996)
in the first case, and the Pfam classification (Bateman et
al., 2000) in the second case. In each case, we compare

the performance of the hybrid method to the correspond-
ing ‘standard’ existing method using the same scoring
functions. We will find that the performance of the hybrid
method is similar (i.e. within statistical error) to that
of the standard method in both cases. Thus, the benefit
of not having to perform long simulations in order to
characterize the statistics is provided by hybrid alignment
at no cost in performance compared to the standard
methods.

We first assess the sensitivity of the hybrid algorithm in
detecting homology among protein sequences contained
in the SCOP database (Murzin et al., 1995; Brenner et al.,
1996) for which detailed structural information (and hence
true similarity) is known. We largely follow the study
of Brenner et al. (1998) who did a similar performance
evaluation for a number of existing algorithms, e.g. WU-
BLAST, FASTA, and gapless BLAST. Specifically, we
use two subsets of the SCOP sequence domains that
Brenner et al. (1998) selected after removing redundancy:
The PDB90D–B sequences which are no more than 90%
identical to each other, and the PDB40D-B sequences
which are no more than 40% identical to each other. These
subsets of SCOP contain 2079 and 1323 protein sequence
domains, respectively. For each of the sequence sets, we
calculate the alignment score between every sequence pair
in the set using the hybrid algorithm. The p-value of
the alignment score is then computed using the statistical
theory described by Yu and Hwa (2001).

To evaluate the performance, we hypothesize that the
two sequences i and j are similar if the p-value p(i, j)
of their alignment score is below some threshold p0.
This is to be compared to the ‘superfamily’ classification
of the SCOP database which we take as the ‘gold
standard’. The superfamily classification separates the
sequence pairs into Np pairs which are truly similar and
Nn pairs which are not similar. It also separates the
pairs deemed similar by the alignment algorithm (i.e.
pairs with p(i, j) < p0) into two classes: Those pairs
which are also similar according to the gold standard
are called ‘true positives’, while the rest are called ‘false
positives’. Clearly, the numbers tp(p0) and fp(p0) of true
and false positives respectively depend on the choice of the
threshold p0. Following Gribskov and Robinson (1996),
we will characterize the algorithm by its coverage rate
c(p0) ≡ tp(p0)/Np and its false positive rate f (p0) ≡
fp(p0)/Nn . The plot of c(p0) against f (p0) is known as
the Receiver Operating Characteristic (ROC) curve. The
overall sensitivity is defined as the area under the ROC
curve, i.e.

∫
c( f )d f .

In Figure 3(a) and (b), we show the ROC curves (solid
lines) as obtained with the PDB40 and PDB90 sequences
respectively, using the hybrid alignment algorithm (Equa-
tions (2)–(5) of Appendix A) with the BLOSUM-62 sub-
stitution matrix as given by Henikoff and Henikoff (1992)
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Fig. 3. Plots of ROC curves for both the hybrid algorithm (solid line) and the Smith–Waterman algorithm (dashed line) for (a) the PDB40D–
B database and (b) the PDB90D–B database. We find that the hybrid algorithm in general performs comparable to the Smith–Waterman
algorithm. The insets magnify the regions very close to zero false-positive rate; they correspond to the regions studied in detail by Brenner et
al. (1998).

and the 11 + k affine gap cost. The sensitivities of the hy-
brid algorithm on the two databases are 0.791 for PDB-40
and 0.855 for PDB-90. A comparison of these ROC curves
to the corresponding results in the study by Brenner et al.
(1998) reveals that the performance of hybrid alignment is
comparable to the best of the algorithms tested there.

To do a more quantitative comparison, we repeat the
above process using the Smith–Waterman algorithm§,
which is generally recognized as the best among the
existing algorithms. We use the same BLOSUM-62
substitution matrix and 11 + k affine gap function. Here,
the conversion from alignment scores to the p-values
requires the knowledge of the score distribution function
which can only be obtained from large simulations: For
each of the five different lengths (N = 75, 150, 300, 600,
and 900) 50 000 random sequence pairs were generated
and aligned in order to obtain reliable score distributions
which enable accurate Gumbel fits including length
corrections.

The resulting ROC curves are plotted as the dashed lines
in Figure 3(a) and (b). It is clear that the performance of
the hybrid and Smith–Waterman algorithms are compara-
ble. Small differences in the ROC curves and in the sensi-
tivity measure (0.767 for PDB-40 and 0.844 for PDB-90)
are not deemed significant, as arbitrary removal of a sub-
set of the sequences results in changes that are of the same
order as the observed differences. The same qualitative re-
sult, that the performance of hybrid and Smith–Waterman
alignment are comparable, is obtained for a number of
other (uniform) scoring functions we examined, although
the absolute performance may differ. For example, the use

§ The exact algorithm used corresponds to Equation (4) of Appendix A,
together with the Viterbi version of Equations (2) and (5) with µ′ = 1 and
η = 1.

of PAM substitution matrices (Dayhoff et al., 1978) led to
worse performance by both algorithms.

Finally, we repeat the above procedure to evaluate
the performance of the hybrid alignment with position-
specific scoring functions. Due to the computational
complexity of the task, a thorough survey of the perfor-
mance of hybrid alignment for different position-specific
scoring systems has not yet been performed. Instead, we
present as a preliminary result the detailed study of one
specific scoring function, namely the Pfam model for
the immunoglobulin (ig) domain. We align the model
to all of the sequences (over a quarter of a million) in
the Pfam A database using the position-specific version
of the hybrid algorithm as done in Section 2. The p-
value of each alignment is obtained using the Gumbel
distribution with λ = 1 as verified in Section 2, with
the other (less important) Gumbel parameter K obtained
via methods described in Appendix B. Here, we use the
Pfam classification as the ‘gold standard’, and compute
the coverage and false positive rates by comparing the
putative homologs based on the p-value cutoff to the 5771
sequences belonging to the ig family according to Pfam
v5.4. From the resulting ROC curve, we find a sensitivity
measure of 0.992 for the hybrid method.

Such a high sensitivity number should not be surprising,
since the ig model was built (i.e. its parameters were
fine tuned) precisely to discriminate the set of sequences
belonging to the ig family. We expect a similar test
using the HMMer program to yield a sensitivity of 1.0,
since HMMer was the very program used to build the
Pfam models. Nevertheless, the high sensitivity number
obtained above for the hybrid method further supports the
notion that the performance of the hybrid algorithm is
comparable to the best of the existing algorithms. In fact,
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Table 1. Sensitivity of hybrid alignment: The PDB40 and PDB90 sequences
are tested using the BLOSUM62 substitution matrix and an affine gap cost
of 11 + k for each gap of length k. While the lower degree of sequence
similarity in the PDB40 database compared to the PDB90 database leads
to a significant difference in sensitivity between the two sequence sets,
comparison with results of the Smith–Waterman algorithm using the same
scoring functions show that the performance of the two algorithms on
the same test set is hardly distinguishable. For a position-specific scoring
function (taken from the Pfam ig model) the sensitivity approaches the
maximum of 1.0 expected of the HMMer program used to build the ig model.

Test set PDB40D-B PDB90D-B Pfam A
(gold standard) (SCOP) (SCOP) (ig)

Hybrid 0.791 0.855 0.992
S-W 0.767 0.844 —

the sensitivity measures summarized in Table 1 indicate
quite clearly that differences in the algorithm play only
a minor role, and the degree of sensitivity is determined
more critically by the choices of the scoring function,
test set, and gold standard. Consequently, we observe that
the much simpler significance assessment of the hybrid
algorithm comes at no significant penalty in performance,
which is the main result of this study.

4 SUMMARY AND OUTLOOK
We have established in this study that the null statistics of
the hybrid alignment scores obey the Gumbel distribution
with the Gumbel parameter λ = 1 for a large class of
scoring functions, including the more than 2000 models
of protein domains contained in Pfam. Furthermore, we
have presented a performance evaluation composed of
a thorough study of the position-independent case and
preliminary results for position-specific scoring systems.
It indicates that the sensitivity of the hybrid algorithm is
comparable to the best of the existing algorithms when
the same scoring functions are used. Therefore, hybrid
alignment is a high-performance alignment algorithm
with well-characterized, universal score statistics. The
latter eliminates the time-consuming simulations normally
needed to assign p-values to alignment scores. In fact,
even the small finite-length corrections to the score
statistics can be computed very efficiently using methods
described in Appendix B and by Yu and Hwa (2001).

Since the hybrid algorithm (as presented in detail in
Appendix A) is a combination of the Smith–Waterman
and the probabilistic local alignment algorithm, its com-
putational complexity is the same as the latter two, i.e.
the computational time of each alignment scales as the
product of the lengths of the two sequences. This is too
slow for large database searches. However, it can be
sped up tremendously by applying the BLAST heuristics,
which looks for ‘diagonals’ of high scores, i.e. runs of
high scores without gaps, and performs the full gapped

alignment only for those cases which contain promising
diagonals. These heuristics will reduce the computational
time to the sum of the two sequence lengths as in BLAST.
One interesting (maybe also important) feature of a
database search tool based on hybrid alignment is that the
universal statistics of hybrid alignment allows automatic
adjustment for unusual amino acid composition of indi-
vidual query sequences in the assignment of p-values,
since the theory of Yu and Hwa (2001) does allow differ-
ent amino acid compositions for the two sequences being
compared. Also, hybrid alignment allows an interactive
search for good scoring parameters since it is not limited
to scoring parameters for which the Gumbel parameters
have been precomputed by simulations. A preliminary
implementation of the hybrid algorithm with BLAST
heuristics for this purpose is available upon request from
the authors.

The ability of the hybrid alignment to provide instan-
taneous and accurate score statistics should be most
useful to applications which iteratively fine-tune the
scoring functions to improve alignment sensitivity. A
well-known example is the PSI-BLAST program, which
fine-tunes the scoring functions each round according
to the ‘significant’ sequences extracted from alignments
in the previous round. This is a case which explicitly
requires the evaluation of p-values for different scoring
functions in real time. The universal score statistics of hy-
brid alignment will enable PSI-BLAST to accommodate
position-specific gap functions for the first time, with a
potential to significantly improve its sensitivity for remote
homology detection.
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Appendix A: The hybrid alignment algorithm
The hybrid alignment algorithm developed by Yu and
Hwa (2001) for uniform scoring functions is first re-
viewed in this Appendix, followed by the algorithm for
position-specific scoring functions. Let the two protein
sequences being aligned be a = [a1, a2. · · · aM ] and
b = [b1, b2, · · · , bN ], where am is the mth amino acid of
sequence a, and bn is the nth amino acid of sequence b.
The basic algorithm for uniform substitution and affine
gap cost consists of recursive iteration of the following
equations,

Z S
m,n = 1 + η W (am, bn) · [Z S

m−1,n−1

+µD1 Z D
m−1,n−1 + µI 1 Z I

m−1,n−1],
Z D

m,n = µD2 Z S
m−1,n + νD Z D

m−1,n, (2)

Z I
m,n = µI 2 Z S

m,n−1 + ν I Z I
m,n−1 + µ′µI 2µD1 Z D

m,n−1

for the three auxiliary quantities Z S
m,n , Z D

m,n and Z I
m,n ,

from m = 0 to M and n = 0 to N , with the boundary
conditions

Z D
m≤0,n≥0 = 0, Z D

m≥0,n<0 = 0,

Z I
m<0,n≥0 = 0, Z I

m≥0,n≤0 = 0,

Z S
m<0,n≥0 = 0, Z S

m≥0,n<0 = 0, (3)

Z S
m=0,n≥0 = 1, Z S

m≥0,n=0 = 1.
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The alignment score S is computed as

S[a, b] = max
1≤m≤M
1≤n≤N

{ ln Zm,n }, (4)

where
Zm,n = Z S

m,n + Z D
m,n + Z I

m,n. (5)

We remark that Equation (4) together with the Viterbi
version of Equations (2) and (5) turns the algorithm to
the Smith–Waterman algorithm. On the other hand, tak-
ing Equations (2) and (5) as they are, but replacing Equa-
tion (4) by eS = ∑

m,n Zm,n turns the algorithm into a
simplified version of the probabilistic local alignment in-
troduced by Bucher and Hofmann (1996). The algorithm
specified by Equations (2), (4) and (5) has just the appro-
priate mixture of the Smith–Waterman and probabilistic
local alignment (hence the name ‘hybrid’) that it produces
universal statistics for the alignment score S, as long as the
parameters of Equation (2) satisfy some weak condition as
specified below.

The possible input parameters to Equation (2) are the
substitution matrix W (a, b), the conservation parameter η,
and the affine gap parameters µD1, µD2, µI 1, µI 2, νD , ν I .
There is one additional parameter µ′ which is either set to
1 if a double-gap (i.e. an insertion immediately following a
deletion, or a deletion immediately following an insertion)
is allowed, or is set to 0 if the double gaps are not allowed.

As described in Yu and Hwa (2001), the hybrid algo-
rithm is defined in a certain subspace of the above scor-
ing parameter space. These parameters can be represented
more succinctly in terms of the usual input to a Smith–
Waterman-type algorithm, which contains a substitution
score s(a, b) (e.g. the PAM or BLOSUM scoring matrix)
and an affine gap cost, say d + εk for each gap of length
k. In terms of s(a, b), d and ε, the parameters become

W (a, b) = exp[λugs(a, b)] (6)

where λug is the unique positive root of the equation
∑

a,b

eλugs(a,b) p(a)p(b) = 1, (7)

for a given model of amino acid background frequency
p(a). The other 7 parameters in Equation (2) are defined
in terms of

µ = exp[−λug(d + ε)] (8)

ν = exp[−λugε] (9)

and µ′ ∈ {0, 1} as

η = (1 − ν)2/[(1 + µ − ν)2 + (µ′ − 1)µ2], (10)

µI 1 = [(1 + µ − ν)2 + (µ′ − 1)µ2]/(1 − ν), (11)

µD1 = [(1 + µ − ν)2

+(µ′ − 1)µ2]/(1 + µ′µ − ν), (12)

µI 2 = µ(1 − ν)/[(1 + µ − ν)2 + (µ′ − 1)µ2], (13)

µD2 = µ(1 + µ′µ − ν)/[(1 + µ − ν)2

+(µ′ − 1)µ2], (14)

νD = ν, (15)

ν I = ν. (16)

The theory of Yu and Hwa (2001) predicts that the
alignment score S obtained using Equations (2)–(5) with
the parameters chosen according to Equations (6)–(16)
satisfies the Gumbel distribution with the key Gumbel
parameter λ = 1 for arbitrary¶ scoring functions s(a, b),
d, and ε in the asymptotic limit M � 1 and N � 1.
The performance evaluation of the hybrid algorithm on
the SCOP sequences described in Section 3 was done with
s(a, b) being the BLOSUM62 substitution scores, d = 11,
ε = 1 and µ′ = 1. The study of the Smith–Waterman
algorithm in Section 3 was done with the Viterbi version
of Equations (2) and (5), with the same BLOSUM62
substitution scores, d = 11, ε = 1, µ′ = 1, and also
with η = 1.

For the general position-specific scoring functions, all
the alignment parameters become position-dependent; the
insertion/deletion weights generally also become amino-
acid dependent. Equation (2) is now replaced by

Z S
m,n = 1 + ηm−1,n−1 Wm,n(am, bn) · [Z S

m−1,n−1

+µD1
m−1,n−1 Z D

m−1,n−1

+ µI 1
m−1,n−1 Z I

m−1,n−1], (17)

Z D
m,n = µD2

m−1,n(am−1) Z S
m−1,n + νD

m−1,n(am−1) Z D
m−1,n,

Z I
m,n = µI 2

m,n−1(bn) Z S
m,n−1 + ν I

m,n−1(bn) Z I
m,n−1

+µ′µI 2
m,n−1(bn)µ

D1
m,n−1 Z D

m,n−1,

with the boundary conditions still given by Equation (3).
In Section 3, we apply the above algorithm to the class
of Pfam models. Each Pfam model of protein domain
is a hidden Markov model (HMM) consisted of a linear
arrangement of ‘nodes’. The total number of nodes M is
called the ‘model length’. Associated with each node m,
there are 9 transition probabilities Pm(Xm → Xm+1),
where X ∈ {S, I, D} represents one of the 3 possible
‘hidden states’, with ‘S’ for substitution, ‘I ’ for insertion,
and ‘D’ for deletion. In the ‘S’ and the ‘I ’ states, the
model can ‘emit’ amino acid b with frequencies Sm(b),
and Im(b) respectively. The Pfam models do not allow for
direct transition between the ‘I ’ and ‘D’ states, hence,
Pm(I → D) = 0 and Pm(D → I ) = 0 for all m’s.
The models are complemented by the boundary conditions

¶ The substitution score s(a, b) needs to have at least one positive entry.
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Table 2. Correspondence between the Pfam HMM model parameters and the
hybrid alignment parameters

Hybrid Pfam HMM

Wm,n(a, b) Sm (b)

ηm≥1,n≥0 Pm (S → S)

µI 2
m≥1,n≥0(bn+1) Im (bn+1)Pm (S → I )

µD2
m≥1,n≥0(am ) Pm (S → D)

µI 1
m≥1,n≥0 Pm (I → S)

µD1
m≥1,n≥0 Pm (D → S)

ν I
m≥1,n≥0(bn+1) Im (bn+1)Pm (I → I )

νD
m≥1,n≥0(am ) Pm (D → D)

µ′ 0

ηm=0,n≥0 P(IN → B)P(B → S)

µI 2
m=0,n≥0(b) P(IN → IN )

µD2
m=0,n≥0(a) P(IN → B)P(B → D)

µI 1
m=0,n≥0 1

µD1
m=0,n≥0 0

νD
m=0,n≥0 1

ν I
m=0,n≥0 P(IN → IN ) + P(IN → B)P(B → D)

that allow null insertions before getting into the begin state
B with probability P(IN → IN ) = 1 − P(IN → B).
The begin state can go to the S state or the D state with
probabilities P(B → S) and P(B → D) respectively.

A Pfam model can be easily accommodated in the
alignment algorithm Equation (17), when the model
is viewed as the sequence a. The Pfam parameters

correspond to some special choices of the alignment
parameters in Equation (17) as indicated in Table 2.
The score statistics and performance of the Pfam models
reported in Sections 2 and 3 are obtained by iterating
Equation (17), augmented by Equations (3)–(5), with
alignment parameters specified according to Table 2 for
each of the Pfam models. As shown in the text, the
alignment score S obeys the Gumbel distribution with
λ = 1 (up to small length-dependent corrections described
in (Yu and Hwa, 2001)) for all of the more than 2000 Pfam
models tested.

Appendix B: The Gumbel parameter K
Our theory does not yet provide us with the value of the
other Gumbel parameter K . However, the parameter K
only fixes the position of the center of the Gumbel distri-
bution, i.e. the p-value of typical alignment scores. Thus,
it plays a much less significant role in the assignment of p-
values than the parameter λ. (The latter describes the tail
of the distribution and therefore the interesting regime of
low p-values.)

Furthermore, K can be determined very rapidly numeri-
cally once λ is known. One may, for example, perform 50
pairwise alignments and convert the average score into an
estimate of K via the expression

〈S〉0 = [ln K M N + γ ]/λ (18)

for the expectation value of a Gumbel distributed variable
S where γ = 0.5772156.. is Euler’s constant.
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