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An increasing number of small RNAs (sRNAs) have been shown to regulate critical pathways in prokaryotes and
eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate
stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most
is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional
sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two
distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory.
Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those
of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust
noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features
of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in
coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits
that have properties difficult to attain with protein regulators alone.
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Introduction

Small noncoding RNAs (sRNAs) have been demonstrated in
recent years to play central regulatory roles in prokaryotes
and eukaryotes [1–4]. Organisms that use sRNAs in post-
transcriptional regulation range from bacteria to mammals.
Interestingly, sRNAs are predominantly implicated in regu-
lating critical pathways, such as stress responses in bacteria
[5–15], or developmental timing and cell differentiation in
plants and metazoans [16,17]. Despite the recent surge of
interest in sRNAs, their regulatory role in bacteria has
actually been a subject of research for the last several decades.
Early on, sRNAs were mainly recognized for their specialized
roles in controlling the transposition of insertion elements
[18,19], in regulating plasmid copy number during plasmid
replication [20–23], and in mediating plasmid maintenance
through the toxin-antidote system [24]. Those sRNAs studied
are encoded on the antisense strand and in cis with their
targets [23,25], to which they bind through perfect base-
pairing. This class of sRNAs will be referred to hereafter as
antisense RNAs. In accord with their biological functions [25],
some of these antisense RNAs are metabolically stable (e.g.,
the ones controlling transposition [26]), whereas others are
very unstable (such as the ones controlling plasmid copy
number [27,28]). For the latter, it has been demonstrated that
the strength of inhibition is strongly related to the binding
rate, rather than the binding affinity, of the antisense RNA
and its target [29,30].

Until recently, only a few cases involving regulation by
trans-encoded sRNA were known [31,32]. The advent of large-
scale experimental techniques [33–36] and bioinformatic
methods [35,37–39] has led to the identification and the
subsequent verification of numerous such sRNAs in a variety
of bacterial species in the past five years. Currently, there are
over 70 such sRNAs identified in Escherichia coli [6,8,40]. Like
regulatory proteins, these sRNAs can regulate the expression

of multiple target genes, and are themselves regulated by one
or more transcription factors. They have been implicated in
the regulation of important pathways including oxidative
response [15], osmotic response [13,32], acid response [9,10],
quorum sensing [7], SOS response to DNA damage [11],
glucose-phosphate stress[14], and more [5,6,8].
The mechanisms by which trans-acting sRNAs exert their

effect are diverse. Most act by binding to the 59 untranslated
region (UTR) of a target mRNA [2,3,6], with specificity
achieved through (often imperfect) base-pairing between
the two RNA molecules. Upon binding, these sRNAs can
reduce the efficiency of translation initiation—e.g., by
interfering with ribosomal binding—or the stability of the
target mRNA. Among these sRNAs that down-regulate their
targets are RyhB (regulator of iron metabolism) [41–44], OxyS
(oxidative stress) [15], and MicC and MicF (osmotic stress)
[13,32]. In contrast, RprA and DsrA promote translation of
their target, rpoS (encoding the stationary phase sigma factor
rs) [5], whereas GadY— the only sRNA in E. coli known to
bind the 39-UTR of its target— stabilizes its target [10].
A large class of trans-acting sRNAs bind tightly to the RNA

chaperone Hfq, a highly abundant protein that also binds the
target mRNA in a number of cases studied [15,45–48].
Binding to Hfq may protect these sRNA molecules from
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degradation in the absence of their mRNA targets [42,49–51].
Hfq has also been shown to facilitate the pairing of an sRNA
with its target mRNA [43,52], leading to the inhibition of
translational initiation. In turn, pairing of the sRNA and
mRNA exposes both molecules to rapid degradation
[42,43,49,53]. Importantly, the interaction between the sRNA
and its target is noncatalytic in nature, since a given sRNA
molecule may be degraded along with its target, instead of
being used to regulate other targets [42].

Some antisense RNAs can also interact with their targets in
a noncatalytic fashion. For example, the antisense RNA RNA-
OUT forms a highly stable complex with its target RNA-IN,
encoding the IS10 transposase [54]. With a half-life of over 2 h
for this complex [55,56], the active antisense RNA may be
regarded as irreversibly ‘‘consumed’’ by its target once the
two bind. A similar stability is shown by CopA and its mRNA
target [57], which codes for the R1 plasmid replication
initiation protein RepA [28]. Although the extended base-
pairing between the antisense RNA and its target eventually
exposes the sRNA–mRNA complex to degradation by RNase
III, this coupled degradation has little effect on repression
itself [56,58]. Thus, for this class of sRNA regulators,
repression is implemented by the irreversible sRNA–target
complex formation, which is also noncatalytic.

The noncatalytic nature of sRNA–target interaction is
qualitatively different from the catalytic effect of many
protein regulators on the expression of their targets (e.g.,
protein regulators are not consumed upon regulating their
targets). It is then interesting to ask whether sRNA-mediated
regulation has special features distinct from protein-medi-
ated regulation. Here we address this question using a
combination of experimental and theoretical approaches.
First, we describe the results of theoretical analysis that
predicts a number of novel features for noncatalytic gene
regulation by sRNAs. These features include a tunable
threshold-linear expression pattern, a robust noise resistance
characteristic, and a built-in capability for hierarchical cross-
talk. These predictions are validated by a series of detailed
experiments that quantified the regulatory effects exerted by

the trans-acting sRNA, RyhB, on several targets in E. coli. We
further extended the experiments to characterize the
regulatory effect of the antisense RNA, RNA-OUT, to test
the prediction that the novel features described above
depended only on the noncatalytic nature of gene regulation
and not necessarily on the degradation of the regulators
themselves.

Results

Theoretical Analysis of the Noncatalytic Mode of Gene
Regulation
The noncatalytic nature of sRNA-mediated gene regulation

suggests a novel threshold-linear mode of action, by which the
expression of a target gene is silenced below a threshold, and
is gradually activated above it (Figure 1). Consider first a case
where sRNA and mRNA are co-degraded in a one-to-one
fashion. In this case, if the transcription rate for the target
mRNA (am) is below that for the sRNA (as) (Figure 1A), then
most of the targets are expected to pair with the sRNAs and
be rapidly degraded, as suggested recently by Lenz et al. [7].
Conversely, if the transcription rate of the mRNA exceeds
that of the sRNA (Figure 1B), then most of the sRNAs are
expected to turnover, whereas the unconsumed mRNAs are
free to be translated into proteins. In the latter regime, the
expressed protein level would reflect the difference between
the two transcription rates. This scenario is summarized by
the blue line in Figure 1C, where the steady state mRNA level
of the target gene (m) is plotted against its transcription rate
(am). Messenger RNAs are expected to accumulate only if the
target transcription rate exceeds the threshold, which is given
by the transcription rate of the sRNA as (vertical dashed line).
The above qualitative prediction can be formulated

quantitatively via a simple kinetic model for sRNA-mediated
gene silencing. The model is cast in terms of two mass-action
equations [7,59] for the cellular concentrations of the sRNA
(s) and its target mRNA (m)

dm
dt
¼ am � bmm� kms

ds
dt
¼ as � bss� kms

ð1Þ

In this model, transcription of mRNAs and sRNAs are
characterized by the rates am and as, and their turnover by
rates bm and bs respectively. The coupled degradation
between sRNA and its target is described through a second-
order kinetic constant k. The levels of Hfq and any
endoribonuclease involved are assumed to be at saturation
and are not tracked explicitly.
The predicted pattern of gene expression is obtained by

solving Equation 1 in the steady state, with the steady state
mRNA level

m ¼ 1
2bm

ðam � as � kÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðam � as � kÞ2 þ 4amk

q� �
ð2Þ

expressed in terms of the two control variables, am and as,
and an effective parameter k ¼ bmbs/k. The latter, being the
ratio of the spontaneous and mutual turnover rates,
characterizes the rate of mRNA turnover that is not due to
the sRNA, and is referred to below as the leakage rate; it is a
(inverse) measure of the strength of sRNA–mRNA interac-
tion. For strong, rapid sRNA–mRNA interactions, the leakage
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Author Summary

The activation of stress response programs, while crucial for the
survival of a bacterial cell under stressful conditions, is costly in
terms of energy and substrates and risky to the normal functions of
the cell. Stress response is therefore tightly regulated. A recently
discovered layer of regulation involves small RNA molecules, which
bind the mRNA transcripts of their targets, inhibit their translation,
and promote their cleavage. To understand the role that small RNA
plays in regulation, we have studied the quantitative aspects of
small RNA regulation by integrating mathematical modeling and
quantitative experiments in Escherichia coli. We have demonstrated
that small RNAs can tightly repress their target genes when their
synthesis rate is smaller than some threshold, but have little or no
effect when the synthesis rate is much larger than that threshold.
Importantly, the threshold level is set by the synthesis rate of the
small RNA itself and can be dynamically tuned. The effect of
biochemical properties—such as the binding affinity of the two RNA
molecules, which can only be altered on evolutionary time scales—
is limited to setting a hierarchical order among different targets of a
small RNA, facilitating in principle a global coordination of stress
response.



rate is small and the solution (Equation 2) is given
approximately by

m’

1
bm
ðam � asÞ þ

as

bm

k

am � as þ
ffiffiffi
k
p for a m � as

am

bm

k

as � am þ
ffiffiffi
k
p for a m � as:

8>><
>>:

ð3Þ

In the absence of leakage (i.e., k¼ 0), Equation 3 is just the
threshold-linear function depicted by the blue line of Figure

1C. For small but finite k, the mRNA level is somewhat larger,
especially near the threshold (where the denominators of the
k terms become small). Thus, leakage makes the transition
smoother, as illustrated by the red line of Figure 1C, but does
not change the qualitative feature of the threshold-linear
form. We note that the value of the threshold (as) is set by the
sRNA transcription rate and is hence a dynamic variable that
is controllable by the genetic circuit (rather than a fixed
quantity such as the binding affinity encoded by the genomic
sequence.) In particular, the threshold value is not affected by
the strength of the interaction parameter k (as long as the
leakage k is reasonably small to preserve the threshold-linear
form).
More generally, it is possible that degradation of the mRNA

in the complex does not always lead to the degradation of the
sRNA. Suppose that a fraction p , 1 of the sRNA is co-
degraded with the mRNA. By repeating the above analysis, we
find the same results, except that as and k in Equations 2 and
3 are replaced by as/p and k/p (Text S1). Thus, partial co-
degradation of the sRNA would effectively increase the
threshold target transcription rate and also increase the
leakage. However, it is not expected to change the form of the
threshold-linear response. Alternatively, the effect of p , 1
could be accounted for by rescaling both axis of Figure 1C
(i.e., m and am) by a factor p. In a typical experiment, only the
relative magnitudes of m and am are determined (see, e.g.,
Materials and Methods). Therefore, the value of p does not
make a difference when confronting the predictions of the
model with experimental data, and we will use the steady-
state solution (Equation 2 or 3) below, regardless of the value
of p.
The kinetic model (Equation 1) provides quantitative

predictions given the knowledge of the different kinetic
parameters. Below, we will apply the model to the sRNA RyhB
[41–43,60], which is one of the best characterized trans-acting
sRNAs and for which ample kinetic data exist for us to infer
realistic values for all of the essential model parameters (see
Materials and Methods, with the results summarized in Table
1). From these parameter values, we estimate a leakage rate k
’ 0.1 nM/min for RyhB. This is small but non-negligible
compared with the relevant range of the transcription rates,
am and as. In fact, the smoothened threshold-linear expres-
sion pattern plotted in red in Figure 1C is the steady-state
solution (Equation 2), with the RyhB parameters listed in the
3rd column of Table 1.

Quantitative Experimental Characterization of RyhB
To validate the kinetic model (Equation 1), we tested

experimentally its direct prediction, namely a smoothened
threshold-linear response function as depicted in Figure 1C
(red line). To this end, we characterized quantitatively the
response of a target gene regulated by the sRNA RyhB. RyhB
is involved in regulation of iron homeostasis in E. coli, and is
expressed at low cellular iron levels. Its targets include iron-
storage and oxidative response genes [41,60] whose expres-
sions are needed to combat problems associated with elevated
iron levels, but not when iron is deficient [61].
To circumvent the complex regulation of the endogenous

system, we constructed a synthetic target gene, consisting of
the 59 control region and the first 11 codons of sodB (which is
the strongest known natural target of RyhB [42,60]), transla-
tionally fused to the coding sequence of the reporter gfp. The

Figure 1. Threshold-Linear Response of a Target Gene

(A) and (B) depict an idealized model for the interaction between mRNAs
of a target gene and sRNAs. If the sRNA transcription rate is larger than
that of the target (A), then gene expression is silenced, whereas if sRNA is
transcribed less efficiently than its target (B), the residual unbound
mRNAs code for proteins.
(C) Predicted response curve of a target gene. The blue line depicts the
idealized threshold-linear mode of regulation in which gene expression is
completely silenced if the target transcription rate is below a threshold
set by the transcription rate of the sRNA (indicated by the dashed line).
Above this threshold, gene expression increases linearly with the
difference between the mRNA and sRNA transcription rates. The
idealized scenario is expected when binding between sRNA and mRNA
occurs extremely rapidly. The red line is the actual response expected
according to Equation 2, using the estimated parameters of Table 1,
column 3 for as¼ 1 nM/min.
doi:10.1371/journal.pbio.0050229.g001
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target gene, crsodB-gfp, was driven by an inducible lac
promoter, PLlac-O1 [62], and placed on the multi-copy plasmid
pZE12S (see Materials and Methods). This construct allowed
us to control the transcription rate of the target, am, by
changing the concentration of the inducer isopropyl b-D-1-
thiogalactopyranoside (IPTG) in the medium. To quantify the
relation between IPTG concentration and target transcrip-
tion rate, we first characterized the bare target expression by
transforming the pZE12S plasmid into a ryhB� strain of E. coli
BW-RI. Expression of the target was assayed by measuring
green fluorescent protein (GFP) fluorescence in the resulting
cells grown in minimal M63 glucose medium with various
amounts (0–0.5 mM) of IPTG (Figure S2). For each concen-
tration of IPTG, we use the slope of the fluorescence versus
optical density at 600 nm (OD600) plot (for OD600 , 0.2) to
define the promoter activity (see Materials and Methods for a
detailed description).

We then repeated these measurements in cells harboring
pZE12S and either chromosomal or plasmid-encoded ryhB.
The expression rate of RyhB, as, was controlled by a variety of
means as detailed below. The GFP expressions at each level of
RyhB expression (extracted from plots similar to Figure S2
for each strain) were then plotted against the above-defined
promoter activity at the corresponding IPTG levels (Figure
2A).

As a calibration, we first observed that GFP expressions in
wild-type (ryhBþ) cells (strain ZZS22) grown in media with 100
lM FeSO4 (red circles) are indistinguishable from those of the
ryhB� cells (strain ZZS21) (dashed black line), indicating the
complete repression of RyhB activity at such a high iron level
as expected. For the same wild-type (ryhBþ) cells grown in
media with no added iron (red crosses in Figure 2A), GFP
expressions were moderately reduced across all IPTG levels,
and more so for a strain carrying a multi-copy plasmid that
harbors ryhB driven by its native promoter (green crosses,
strain ZZS24). These results are qualitatively consistent with
the expected increase of RyhB expression upon reducing the
iron level and upon adding multi-copy plasmid-borne
sources.

To see the effect of even higher RyhB expression, we
characterized GFP expression for a strain which was deleted
of the chromosomal ryhB gene, but carried another plasmid
harboring the ryhB structure gene driven by the strong

synthetic PLtet-O1 promoter [62] inducible by anhydrotetracy-
cline (aTc) (strain ZZS23). In the absence of aTc in the growth
medium (blue circles), GFP expression was essentially indis-
tinguishable from that of the RyhB-less strain (ZZS21, dashed
black line). The addition of small amounts of aTc (blue
crosses, squares, and asterisks) drastically reduced GFP
expression (up to 30-fold reduction compared with that of
the RyhB-less strain). Altogether, using combination of
chromosome and plasmid sources for RyhB, we present in
Figure 2A the response of the target gene crsodB-gfp to varying
promoter activities in the presence of six different levels of
RyhB expression.
To verify that RyhB regulation was indeed achieved

primarily through changes in the target mRNA level, we
quantified the levels of the crsodB-gfp mRNA directly for
strain ZZS23 (harboring plasmid-borne PLtet-O1:ryhB) at two
distinct levels of RyhB expression (corresponding to 0 and 5
ng/ml aTc added to the growth medium) and a variety of
transcription levels for the crsodB-gfp target (0.1, 0.25, 0.5 mM
IPTG in the growth medium) using quantitative real-time
PCR (RT-PCR) (Figure 2B). We find that reduction in mRNA
level is consistent with the corresponding reduction in GFP
fluorescence; compare the solid and striped bars.
The interaction between RyhB and its endogenous targets

depends on the RNA chaperone Hfq [41,43,49]. To demon-
strate that the interaction between RyhB and the synthetic
target, crsodB-gfp, shares this property, we repeated our
measurements in strains deleted of hfq. In Figure 2C (middle
group), we show the ratio between GFP fluorescence levels in
a hfq� strain expressing RyhB from the PLtet-O1 promoter
(ZZS23q) and a RyhB-less hfq� strain (ZZS21q) for various
levels of the inducers IPTG and aTc. We found that in the
absence of hfq, the aTc dependence of the isogenic hfqþ strain
(Figure 2C, left group) was completely abolished, and GFP
expressions all became the same as those of the RyhB-less
strains (all of the bars of the middle group take on values ;1).
The results indicate that hfq is required for the repression
effect observed here. This behavior is expected for a RyhB
target, since RyhB accumulation and RyhB-target interaction
requires Hfq [41–43,53,63].
As a different control, we characterized the GFP expression

for hfqþ strains in which the plasmid pZE12S was replaced by
pZE12G, harboring the same PLlac-O1:gfp reporter, except that
the 59-UTR of the gfp gene was a short 27-base segment
containing a strong ribosomal binding site instead of the sodB
control region (see Materials and Methods). In Figure 2C
(right group), we show the ratio between GFP fluorescence in
a strain expressing RyhB from the PLtet-O1 promoter (strain
ZZS13) to that in the RyhB-less strain (ZZS11). We find that
different degrees of RyhB expression have no effect on the
observed GFP activity for all the inducer levels tested,
indicating that the sodB control region is required for
interaction.

Reporter Target of RyhB Exhibits Threshold-Linear
Expression Pattern
The data of Figure 2A reveal a spectrum of gene expression

patterns: with RyhB expression strongly repressed (blue and
red circle, red crosses), expression of the target gene was
mainly controlled by the activity of its own promoter
(controlled by IPTG), whereas for high RyhB expression (blue
asterisks), target expression was greatly reduced regardless of

Table 1. Model Parameters: Definitions and Estimated Values

Parameter Meaning Estimated Value

RyhB/sodB RNA-IN/RNA-OUT

am Transcription rate

of target mRNA

1/10;1 nM/min 1/250;1/25 nM/min

aS Transcription rate

of sRNA

1/10;1 nM/min 1;10 nM/min

bm Decay rate of free

mRNA

1/10 min�1 3/10 min�1

bS Decay rate of free

sRNA

1/50 min�1 1/50 min�1

k Binding rate of

sRNA:mRNA complex

1/50 (nM min)�1 1/50 (nM min)�1

doi:10.1371/journal.pbio.0050229.t001
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the promoter activity. This qualitative behavior is what would
be expected based on the model depicted in Figure 1. To
make quantitative comparison with the predictions of the
kinetic model (Equation 1), the data in Figure 2A were fitted
to the steady-state solution of the model, Equation 2. This fit
requires a single global parameter (associated with the
leakage rate k) and one additional free parameter (corre-
sponding to the activity of the promoter expressing the
sRNA, as) per curve. The latter characterizes the position of
the softened threshold, and is listed in Table S1 for each RyhB
source studied. The corresponding best-fit curves are shown
as the colored lines in Figure 2A.
The data of Figure 2A are fitted very well by softened

threshold-linear form predicted by the model: a prominent
feature of the predicted behavior—that target gene expres-
sions all have the same linear dependence on its promoter
activity at high expression levels much beyond the threshold,
i.e., m}am � as—is clearly reflected by the red, green, and the
top blue curves for which the thresholds are much below the
maximal promoter activity probed. The predicted threshold-
linear response is best seen for intermediate RyhB expres-
sions (green and blue crosses, blue squares); target expression
was strongly repressed at low transcription levels, but turned
up sharply for increasing activities of the target promoter.
Another way to present or view the threshold-linear

response is that the fold-repression exhibited at a given
RyhB transcription rate should decrease as the rate of target
transcription increases. This is shown for the data of Figure
2A in Figure S4. We performed similar characterization for
strains harboring a synthetic chromosomal target (PLlac-

O1:crsodB-gfp inserted at the attP site); see caption of Figure
2D for details. While quantitative characterization of GFP
expression becomes much more difficult for this chromoso-

Figure 2. Threshold-Linear Response of a Reporter Target of RyhB

(A) GFP expressions of various rhyBþ strains (red: strain ZZS22, green:
ZZS24, blue: ZZS23) are plotted against the promoter activity, defined as
the GFP expression of the ryhB� strain (ZZS21) grown in identical
medium (see Table 2 for information on the strains). Different promoter
activities were obtained by varying IPTG concentration in the media (for
example, the blue symbols were measured at 0, 0.05, 0.15, 0.2, 0.25 0.3,
0.4, 0.5 mM IPTG; see Figure S3). The curves are obtained from a single
parameter fit of the data to the steady-state solution (Equation 2), as
explained in the text and Table S1.

(B) Ratio of GFP expression in the ryhBþ strain ZZS23 (harboring PLtet-O1:ryhB)
and the RyhB-less strain ZZS21 measured through GFP fluorescence
(solid bars) and RT-PCR (striped bars), for two different levels of aTc (blue
and red) and three different levels of IPTG. In each case examined, the
fold-change in GFP expression corresponded well to the fold-change in
mRNA level.
(C) Different RyhB levels (synthesized from PLtet-O1:ryhB driven by
different levels of aTc) do not significantly change GFP expression in
hfq� strains (middle group), or when crsodB-gfp is replaced by a gfp with
a short 59-UTR (right group). GFP fluorescence was measured in hfq�

strains that express a plasmid-borne target (PLlac-O1:crsodB-gfp) with
(ZZS23q) or without (ZZS21q) plasmid-borne RyhB. The ratio between
the two at different levels of inducers is plotted in the middle group of
bars. Similarly, GFP fluorescence was measured in strains carrying the
pZE12G plasmid, in which the gfp structure gene with a short 59-UTR is
placed immediately downstream of the promoter, with (ZZS13) or
without (ZZS11) plasmid-borne RyhB. The ratio between the two is
plotted in the right group of bars. For comparison, data for the isogenic
hfqþ strains with the crsodB-gfp reporter are taken from (A) and replotted
in the same format as the left group.
(D) The fluorescence levels of cells expressing GFP by PLlac-O1:crsodB-gfp
inserted chromosomally at the attP site was measured by flow-cytometry
for strains ZZS43 (no ryhB), ZZS41 (plasmid-borne PLtet-O1:ryhB), and
ZZS01 (which contained no gfp gene). The latter was used to quantify
the background fluorescence level. The fold of repression (vertical axis),
is defined as [fluorescence(ZZS41)� fluorescence (ZZS01)]/[fluorescence
(ZZS43)� fluorescence (ZZS01)]. The data show that the repression effect
of RyhB is reduced at higher levels of IPTG, corresponding to larger
transcription rates of the target. For the ease of comparison, the GFP
fluorescence data of (A) is replotted in the same manner in Figure S4,
where similar behavior is seen. These results show that the nonlinear
effect of RyhB is also exhibited by a chromosomally encoded target.
doi:10.1371/journal.pbio.0050229.g002
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mally encoded target due to the low expression level, we see
qualitatively from Figure 2D that the same trend is obtained.

Threshold-Linear Response via Irreversible sRNA-Target

Binding
As motivated in the theoretical study, we expect the

threshold-linear response to be a generic feature of non-
catalytic mode of gene regulation, not necessarily limited to
sRNA-target pairs that undergo coupled degradation. For a
number of the antisense RNA-target pairs, e.g., CopA/RepA of
the R1 plasmid [57] and RNA-OUT/RNA-IN of the transposon
IS10 [55,56], the pairing of the antisense RNAs with their
respective targets was found to be irreversible but stable for
hours. From the theoretical perspective, as long as the duplex
does not dissociate back into the two active RNA components
at relevant time scales, the system can still be described by the
kinetic model (Equation 1) if we identify m and s as the free

mRNA and sRNA concentrations. We thus expect the same
smoothened threshold-linear response as described above.
We tested this prediction using RNA-OUT, the antisense

sRNA that regulates the transposition of the IS10 insertion
element in E. coli [18,19]. In IS10, the transposase gene
(referred to here as is10in) is driven by the pIN promoter.
Located only 35 bases downstream on the opposite strand is
the pOUT promoter, which drives the transcription of the
gene is10out encoding RNA-OUT. The prefect base pairing
between the two RNA molecules at the 59-UTR of is10in leads
to a strong irreversible binding [55,56], which represses the
translation of is10in [54] with only mild effect on its stability
[56]. Quantitative data from previous experiments [26,56,64–
68] in which RNA-OUT was expressed in both cis and trans
allowed us to estimate key parameters for this sRNA-target
pair (Text S1 and Table 1, column 4). Most of these
parameters take on values similar to those we estimated for
RyhB and its sodB target (Table 1, column 3). However, the
degradation rate of RNA-IN, bm, is larger than the corre-
sponding rate of typical RyhB targets [64], making the leakage
rate k larger. We therefore expect is10in to exhibit a
somewhat smoother threshold-linear expression pattern. In
the native IS10 system, however, the sRNA and its target are
expressed in cis. This is likely to increase the sRNA-target
binding rate (k) substantially, hence reducing the leakage k
and making the transition sharper.
To measure the effect of repression by RNA-OUT, we

constructed a synthetic target consisting of a modified is10in
control region translationally fused to gfp. The control region
we use differs from that of the native is10in in two nucleotide
positions, making its ribosome binding site (RBS) stronger
(see [64] and Materials and Methods). The target gene,
referred to as cris10-gfp, was inserted immediately down-
stream of the PLlac-O1 promoter in plasmid pZE12IS.
Promoter activities at eight levels of IPTG (0–0.75 mM) were
established as described before (Figure S2), by measuring GFP
fluorescence in a strain (ZZS31) which carries pZE12IS but no
RNA-OUT.
As a controlled source of RNA-OUT, we used the pZA31O

plasmid, which harbors the is10out gene driven by the strong
synthetic PLtet-O1 promoter [62]. We measured the response
function at four different expression levels of RNA-OUT
using different concentrations of the inducer aTc (0, 2, 6, and
10 ng/ml). The data obtained (symbols in Figure 3A) were
fitted to the steady-state solution (Equation 2) as described
above; best-fit parameters are given in Table S2. The fitted
curves are presented as the solid lines in Figure 3A. In the
absence of aTc, cris10-gfp expression coincides with that of the
corresponding strain with no RNA-OUT source (dashed black
line). At higher levels of aTc, the threshold-linear response is
recovered, displaying a smooth transition as expected.
To verify that RNA-OUT repressed the translation of

cris10-gfp mRNA without significantly altering its accumula-
tion, we quantified the mRNA concentration of cris10-gfp
using RT-PCR. The result is shown in Figure 3B. Whereas the
GFP expression is repressed by more than 4-fold upon the
addition of 10ng/ml aTc (solid blue and red bars), the mRNA
levels were hardly affected by aTc addition (striped blue and
red bars). Together, the results of Figure 3A and 3B validate
the prediction that coupled degradation is not necessary for
the threshold-linear form if the coupling between the sRNA
and its target is irreversible.

Figure 3. Threshold-Linear Response of a Reporter Target of RNA-OUT

(A) GFP expressions of strain ZZS35 (is10outþ) are plotted on the vertical
axis against the promoter activity, defined (as in Figure 2) as the GFP
expression of strain ZZS31 (is10out�) grown in identical medium. The
different symbols correspond to the different levels of RNA-OUT
expressed by the PLtet-O1 promoter. The latter was controlled by varying
amounts of aTc added to the growth medium (see legend). The solid
lines are the steady-state solution (Equation 2) using the best-fit
parameters listed in Table S2.
(B) Ratio of GFP expression in is10outþ (ZZS35) and is10out� (ZZS31)
strains measured through GFP fluorescence (solid bars) and RT-PCR
(striped bars). Expression of RNA-OUT was induced by 10 ng/ml aTc (red),
whereas target expression was induced with 0.3 mM IPTG [correspond-
ing to the 4th diamond from the right in (A)]. Change in the mRNA level
of cris10-gfp (striped bars) is insignificant compared with changes in GFP
fluorescence (solid bars).
doi:10.1371/journal.pbio.0050229.g003
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Hierarchical Cross-Talk between sRNA Targets
Some trans-acting sRNAs (including RyhB) have been

shown to regulate multiple targets [6,8,60] whose expressions
are independently regulated [69]. Because any one of the
targets can reduce the level of sRNA, it is plausible for sRNA
to mediate indirect interaction (cross-talk) between its
different targets. In Figure 4A, we compare the expression
of our reporter target, crsodB-gfp, in cells with and without the
sodB structure gene (strains ZZS22 and ZZS22s respectively),
both containing the chromosomal ryhB gene. Figure 4A shows
that (i) the expression of the crsodB-gfp reporter is affected by
the existence of the chromosomal sodB gene, with up to 4-fold
higher expression in the sodB�mutant (strain ZZS22s), and (ii)
the degree of enhanced reporter expression in this strain is
dependent on the transcriptional activity of the reporter (the
x-axis, controlled by IPTG). In comparison, no significant
difference in expression was observed between sodBþ and
sodB� in ryhB� mutants (unpublished data). The results of
Figure 4A suggest that the expression of the chromosomal
sodB indeed interfered with the repression of crsodB-gfp by
RyhB as anticipated.
It is straightforward to extend the kinetic model (Equation

1) to the case of multiple targets and account for the indirect
interaction between them (Text S1). Assuming similar
degradation rates for the two targets in the absence of the
sRNA, the expressions for the mRNA level take the same
functional form in the presence or absence of additional
targets. To address the data of Figure 4A, we performed
independent fits of the data of the sodBþ strain (red line in
Figure 2A) and the data of the sodB� strain. The ratio of the
two is given by the black curve in Figure 4A. The shape of this
curve shows that the effect of the sodB gene on the expression
of the GFP reporter was peaked at a level of its promoter
activity that corresponded to the expression threshold of the
sodBþ strain (ZZS22) (see the position of the kink of the red
line of Figure 2A). This is a manifestation of the general
prediction of the theory that target expression is most
sensitive to changes in sRNA levels at the threshold, where the
transcription of the sRNA and its target just balances.
Further evidences for cross-talk between different targets

of RyhB are given in Figure 4B. The mRNA levels of two
chromosomal RyhB targets (sodB and fumA [41,60]), as
quantified by RT-PCR, are shown for different expression
levels of the synthetic target gene (crsodB-gfp) driven by the
PLlac-O1 promoter carried on the pZE12S plasmid. Open bars
correspond to the control strain with no RyhB source
(ZZS21), and colored bars correspond to different degrees
of RyhB expression corresponding to different levels of aTc
(in strain ZZS23). The x-axis indicates different levels of target
expression, induced by IPTG. At basal expression level (no
IPTG added), expression of the chromosomal targets is
repressed by RyhB up to 10-fold (compare the blue and red
bars for [IPTG] ¼ 0). High expression of the plasmid target
effectively rescues the chromosomal targets from repression
([IPTG] ¼ 0.5 mM).
These data suggest that the cross-talk between different

targets may allow for one target to relieve sRNA-mediated

Figure 4. Cross-Talk between Different Targets of a Common sRNA

(A) The fold-change between expression of the plasmid-borne reporter
target crsodB-gfp in strain ZZS22 (sodBþ) and strain ZZS22s (sodB�) cells.
Promoter activity of the reporter was controlled by IPTG. The black line
depicts the steady-state solution of a coupled-degradation model which
is a straightforward generalization of the model (Equation 1) to the case
of two targets (Text S1).
(B) The effect of the expression of the multicopy target reporter on the
expression of chromosomal targets. mRNA levels of two chromosomal
RyhB targets, sodB and fumA, were determined using RT-PCR in strains
with (ZZS23) and without (ZZS21) the ryhB plasmid. The repression effect
of RyhB is measured as the ratio between mRNA levels in the two strains.
As the expression level of the synthetic target, crsodB-gfp, is increased
(by increasing IPTG concentration), the repression effect on the
chromosomal targets is reduced.
(C) Predictions of the coupled degradation model (Equation 5 of Text S1)
for the expression of the reporter gene (geneR) to different transcription
levels (aT) of another target (geneT). To generate the figure, we chose the
transcription rate of geneR (aR) to be five times smaller than that of the
sRNA, i.e., with aS ¼ 5aR. The ratio between the binding strengths of

geneT (kT) and geneR (kR) to the sRNA determines the level of influence
geneT has on the expression of geneR, and the abruptness at the onset of
geneR activity. See text for details.
doi:10.1371/journal.pbio.0050229.g004
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repression of another target. To explore this possibility, we
used our model (Equation 5 in Text S1) to calculate the
expression level of a reporter target (geneR) that is regulated
by the same sRNA as another target gene (geneT). We denote
the transcription rates of the two genes by aR and aT,
respectively, and their binding rates to the sRNA by kR and kT.
The predicted dependence of geneR mRNA level on the ratio
between transcription rates of the two genes (aT/aR ), and the
ratio between the two binding constants (kT/kR), is displayed
in Figure 4C (where geneR mRNA level is measured in units of
its level in the absence of the sRNA). In this figure,
transcription rate of geneR is chosen to be 5 times smaller
than that of the sRNA. Therefore, in the absence of geneT (aT
¼ 0), expression of geneR is strongly suppressed by the sRNA.

Figure 4C portrays a hierarchical cross-talk effect: the
expression of a weakly interacting target (e.g., geneR, with a
small kR) is highly affected by another target that is more
strongly interacting (e.g., geneT, with kT . kR); see the large kT/
kR region of Figure 4C, where the expression of geneT
(increasing aT/aR) indirectly activates geneR by relieving the
sRNA repression. Conversely, a strongly interacting target
(e.g., geneR, with a large kR) is expected to be much less
affected by a weakly interacting one (e.g., geneT, with kT , kR).
Thus, in the small kT/kR region of Figure 4C, the expression of
geneR remains suppressed even when geneT is highly ex-
pressed. Interestingly, our calculation predicts that for large
kT/kR, the response of geneR to changes in the transcription
rate of geneT may be very sharp. For example, the data of
Figure 4C allow for an effective Hill coefficient ;10 for kT/kR

’ 2. Thus, the sensitivity of the sRNA-mediated repression
may be translated into sensitivity in the indirect interaction
between its targets.

Discussion

The ‘‘standard model’’ of gene regulation in bacteria
primarily involves transcriptional initiation control by one
or more regulatory proteins. Solid understanding of the key
mechanistic ingredients of transcriptional regulation [70],
stemmed from decades of research in molecular biology,
leads to a reasonable quantitative description [71–73].
Although such a framework for sRNA is still lacking, the
successful description of our experimental results by the
simple kinetic model (Equation 1) for sRNA-mediated
regulation prompted us to use this model to compare
between the two modes of regulation.

sRNA Regulation Is Subject to Dynamic Control
Analysis of a simple model of protein-mediated gene

regulation (Text S1) predicts that regardless of whether a
protein regulator acts as a transcriptional repressor or as a
catalyst of mRNA degradation, target expression always
increases linearly with the promoter activity. The ratio
between expression levels at different concentrations of the
regulator is independent of the target activity (Figure 5B).
Thus, one can safely talk about the strength of repression in
term of the fold-change in gene expression in the presence
and absence of the repressor without referring to the rate of
target transcription.
This is, however, not the case for the threshold-linear mode

that characterizes sRNA-mediated regulation. Here the fold-
change depends not only on the presence of the repressor,
but also on the transcription of the target (Figure 5A, arrows).
For the same degree of repressor transcription (e.g., compare
the red and blue lines), the fold repression could be small
(e.g., 2-fold) above the threshold and large (e.g., 25-fold) below
the threshold. This property may have functional consequen-
ces: sRNA may serve to tightly shutdown a gene that is
repressed by other means. However, at circumstances that
allow for high expression of the target, sRNA expression may
exert virtually no effect. Moreover, in the threshold-linear
mode of sRNA-mediated gene regulation, the onset of
repression is set by comparison of transcription rates
between sRNA and its target. As a result, the threshold value
is dynamically tunable through controlling the rate of sRNA
transcription. In contrast, protein–operator binding affinity,
which controls the onset of repression in protein-mediated
regulation, is fixed genetically by the operator sequence.
Dynamic control of the latter would require other cofactor(s)
and auxiliary binding sites and become more elaborate to
implement. Of course, the more complex mode of control
described here for sRNA can, in principle, be realized
through more complex promoters involving more complex
protein–protein interactions [74]. Also, features of sRNA-
mediated regulation discussed here may also be realized by
proteins that regulate the proteolysis of their targets in
noncatalytic ways. In the latter case however, the steady co-
degradation of protein regulators may pose a substantial
metabolic load.
In a number of cases studied, a sRNA serves as a node in a

regulatory cascade. Expression of the sRNA may be con-

Figure 5. Comparison between sRNA- and Protein-Mediated Repression

(A) Steady-state solution of model (1), with the estimated parameters of
Table 1. The strength of sRNA repression decreases as the target
transcription increases. (B) Steady-state solution of a model for protein
regulators (Supporting Text S1), where the strength of repression is
independent of target transcription rate. (C) Temporal behavior in a
single stochastic simulation [94] of the expression of two model genes,
geneA (blue line) and geneP (red), regulated by sRNA and protein
regulators respectively. For geneA we set aA¼ 1/min and kA¼ 0.02/min,
while for geneP we have aP¼0.0043/min and kP¼0. All other parameters
are taken from Table 1 and are identical for both genes. This choice of
parameters makes the mean mRNA levels of the two genes equal. The
bursty nature of the noise for geneP is compared with the smooth
fluctuations exhibited by geneA.
doi:10.1371/journal.pbio.0050229.g005
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trolled by protein regulator that senses (directly or indirectly)
an environmental signal. For example, the Ferric Uptake
Regulator (Fur) is activated by free Fe2þ ions and negatively
regulates transcription of RyhB, which in turn regulates
targets whose expressions are required when Fe2þ is abundant
in the cytoplasm [41,60]. Our results suggest that sRNA
regulators may be more than a simple ‘‘inverter’’ of such a
protein regulator. sRNA regulators could act, for example, as
a ‘‘stress-relief valve.’’ In the iron example, whereas Fur senses
levels of Fe2þ continuously (through rapid equilibration
between Fur and Fur–Fe2þ), we predict that targets of RyhB
will only be expressed when the Fe2þ level crosses some
threshold. This threshold can be set dynamically for each
target by regulators controlling its transcription.

Recently it has been suggested that targets of microRNA
regulation in eukaryotes may be classified as ‘‘switch,’’
‘‘tuning,’’ and ‘‘neutral’’ targets, depending on their response
to microRNA level [75,76]. In the framework presented here,
these classes correspond to targets whose transcription rate is
well below, near, or well above that of the RNA regulator. We
emphasize, however, that the threshold-linear picture we
draw is only applicable if the level of the free RNA regulator
is affected by its interaction with its targets, i.e., for regulators
that operate in the noncatalytic mode. This is yet to be
established for microRNAs in eukaryotes.

sRNAs May Exhibit Tight Repression of Fluctuations
Our model predicts that deep in the repressed state, the

sRNAs strongly repress variations in protein expression. The
effect of noise on gene expression is a subject of extensive
current research [77–80]. We studied this effect theoretically
by generalizing the model (Equation 1) to incorporate
stochastic fluctuations (Text S1). In Figure 5C, we compare
results of stochastic simulations for two genes with the same
low mean protein expression: geneA is silenced by a sRNA, and
geneP is repressed transcriptionally by a protein regulator. In
general, we predict a much-reduced variance in protein level
for sRNA-mediated regulation (Text S1). This can be under-
stood by inspecting the time courses of protein expression
(Figure 5C). With the protein regulator (red curve), any
leakage in transcription is amplified through translation,
resulting in large bursts of protein expression, as was recently
observed experimentally [81,82]. With the sRNA (blue curve),
gene expression is expected to be much smoother, because
mRNA molecules are rarely translated. This difference in the
noise properties may be very important in situations where a
large burst of proteins will switch a cell from one stable state
to another. In cases such as stress responses where uninten-
tional entry into the alternative state may be harmful and
spontaneous switching is to be avoided, sRNA-mediated
regulation might possess a distinct advantage. Attenuation
of noise by decreased burst size may also be accomplished by
eukaryotic microRNAs [76], through a decrease in mRNA
stability or inhibition of translation.

sRNA Regulation May Be Highly Sensitive
sRNA-mediated regulation was predicted to be ultra-

sensitive to small changes in sRNA expression near the
threshold [7]. A common measure for the abruptness of a
transition, referred to as the ‘‘sensitivity,’’ is the maximal
slope of the response curve, m(as), in a double-log plot. From
the solution (Equation 2), we find this sensitivity to be given

by 1
2

ffiffiffiffiffiffiffiffiffiffiffi
am=k

p
, which quantifies our statement that lower

leakage makes a sharper transition, and also predicts a
sharper transition for highly expressed targets. For sRNA
regulators described by the parameters of Table 1, we find the
sensitivity to be given approximately by 2.5 for am ¼ 1 nM/
min, and 4.3 for am ¼ 3 nM/min . In comparison, the
sensitivity of a protein repressor is bounded by the Hill
coefficient, which is typically �2, although higher sensitivity
(3;4) can also be accomplished via, e.g., DNA looping [73].
On the other hand, much higher sensitivity can be achieved
by processes such as those with zeroth-order kinetics [83].

Hierarchical Cross-Talk between Targets of sRNA
Our data demonstrate how the activity of a strong target of

RyhB may influence the expression of another target. In
particular, we show that over-expression of a plasmid-borne
target relieves completely the strong sRNA repression of its
chromosomal target. Generalizing our kinetic model offers a
simple intuitive picture (Figure S1). A weak sRNA target
(geneR) is completely repressed by the sRNA when another,
stronger target (geneT, with kT � kR) is not expressed (Figure
S1A). Expression of the latter captures a significant portion of
the sRNAs, thus allowing some mRNA molecules of geneR to
be translated into proteins (Figure S1B). On the other hand,
expression of another target weaker than geneR may not
attract enough sRNA to affect the expression of geneR
(unpublished data).
In the context of a single target, our model predicts that

the strength of the sRNA–target interaction influences only
the smoothness of the transition, but not the threshold value
of the threshold-linear expression pattern. However, when
multiple targets are expressed simultaneously, the different
mRNA species are expected to compete for association with
the same pool of sRNA, and the relative interaction strength
becomes a key determinant of the complex interactions that
ensue. The interaction strength of the different targets sets
their relative position in the cross-talk hierarchy, where
targets of a given binding strength affect—but are not
affected by—targets of lower binding strength.
Through quantitative characterization of gene regulation

for two distinct classes of sRNA regulators, we have shown
that sRNA-mediated regulation has many functional proper-
ties that are fundamentally different from the classical,
protein-mediated mode of gene regulations. Analysis of our
model suggests that sRNAs may offer tight regulation below
the threshold (repressing the average expression and reduc-
ing fluctuations) accompanied by derepression away from the
threshold. Taken together, this suggests that sRNAs working
in the threshold-linear mode may be particularly suitable for
a ‘‘stress-relief’’mechanism, where no action is elicited until a
tolerance threshold is exceeded. Knowledge of these proper-
ties is essential to an integrated understanding of gene
regulatory systems, and may inspire the design and synthesis
of novel genetic circuits [84] with properties difficult to
obtain by using regulatory proteins alone.

Materials and Methods

Strains and plasmids. All experiments were performed with BW-RI
cells derived from E. coli K-12 BW25113 [85], with the transfer of the
spr-lacI-tetR cassette from DH5a-ZI cells [62] by phage P1 trans-
duction. This cassette provides the constitutive expression of lacI and
tetR genes [62]. For some experiments, ryhB and/or sodB were deleted
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from BW-RI [85]. These strains were then transformed by the
following target and source plasmids. All strains and plasmids used
are summarized in Table 2.

pZE12-luc, whose copy number has been estimated at 50–70 copies
[62], was used to make the target plasmid pZE12S. Using site-directed
mutagenesis, an EcoRI site was created by adding GAAT immediately
downstream of þ1 of the PLlac-O1 promoter. The region between the
newly created EcoRI site and the resident EcoRI site 6 bp upstream of
RBS was then deleted by EcoRI digestion and subsequent religation,
yielding pZE12-lucM. The KpnI-XbaI flanking luc gene in pZE12-lucM
was replaced by the gfpmut3b structure gene [86]. This yields pZE12G,
which harbors the PLlac-O1:gfpmut3b construct with a 59-UTR defined
by an EcoRI site immediately downstream of þ1 and a KpnI site
immediately upstream of the translation start of gfpmut3b. The 15-
base sequence sandwiched by the EcoRI and KpnI sites, ATTAAA
GAGGAGAAA, contains an RBS indicated by the underlined bases.
The 59-UTR from the control region of sodB (crsodB, from �1 to þ88
relative to the transcriptional start site of sodB and including the first
11 codons) was cloned into the EcoRI and KpnI sites of pZE12G,
yielding pZE12S. pZE12S therefore contains the ColE1 ori, the PLlac-O1
promoter [62], and crsodB fused to the coding sequence of the
gfpmut3b gene. Similarly, the control region of is10in (fromþ1 toþ36)
was substituted for crsodB in pZE12S, yielding pZE12IS. To improve
the expression level, the RBS in the is10in control region was
modified by changing TC (þ16 toþ17) to GG.

Three sRNA-source plasmids (pZA30R, pZA31R, and pZA31O),
were derived from the pZA31-luc plasmid, which has been estimated
to maintain at 20–30 copies per cell [62]. Each contains the p15A
replication ori and is marked by chloramphenicol resistance. First, a
NdeI site was added immediately downstream theþ1 of the luc gene by
inserting ATG between þ2 and þ3, and a BamHI site was added
downstream of luc by inserting ATC between the 1,772th and 1,773th
nucleotides, yielding pZA31-lucNB. For pZA31R, the ryhB gene (from
þ1 toþ96 cloned directly from E. coli K-12) was ligated into the NdeI/
BamHI sites of pZA31-lucNB, replacing the luc gene. For pZA30R, the

PLtet-O1 promoter and the luc gene of pZA31-lucNB were replaced by
PryhB:ryhB (from�62 toþ96 cloned directly from E. coli K-12 MG1655),
which contains the ryhB gene and its native promoter. Finally, for
pZA31O, the is10out gene (fromþ1 toþ103) was substituted for the luc
gene in pZA31-lucNB.

In addition, we transferred the target crsodB-gfp to the attP site of
strain ZZS00 (ryhB�) chromosome using the method of Diederich et
al. [87]. Briefly, a SalI/BamHI-flanked PLlac-O1: crsodB-gfpmut3b con-
taining the downstream terminator was cloned into the same sites of
pLDR10 containing the attachment site attP and encoding the
chloramphenicol (Cm) resistance. The recombinant plasmid was
digested with NotI and the larger portions of the plasmids containing
the fragment of interest but not the ori were religated. The circular
DNA molecules were transformed into ZZS00 cells expressing the int
gene contained in pLDR8, a helper plasmid bearing a temperature-
sensitive ori and encoding the kanamycin (Km) resistance. The
transformations were applied on LBþAp plates that were incubated
at 42 8C. The transformants were tested for sensitivity to Cm and Km.
The ampicillin (Ap)-resistant but Cm- and Km-sensitive trans-
formants were identified as the clones that carry the DNA fragment
of interest at the attP site of E. coli chromosome.

Medium, growth, measurements. BW-RI strains each containing
the target and/or source plasmids were grown in M63 minimal media
with 0.5% glucose, and standard concentrations of the appropriate
antibiotics. The overnight cultures were diluted into fresh M63 media
(OD600 ’ 0.002) containing the appropriate antibiotics as well as
varying amounts of the inducers (aTc, IPTG, FeSO4) in the wells of
48-well plates. The plates were incubated with shaking at 37 8C and
taken for OD600 and fluorescence measurements every hour for up to
12 h (until a final OD600 of 0.2–0.3) using a TECAN Genios-Pro plate
reader (http://www.tecan.com). Each measurement was repeated 3–6
times and the data were analyzed as discussed below.

For RT-PCR measurements, overnight cultures were used to
inoculate M63 medium with 0.5% glucose, standard concentrations
of the appropriate antibiotics, and various concentrations of

Table 2. Bacterial Strains and Plasmids Used in This Study

Strain/Plasmid Genotype Derived From Comments

BW-RI spr-lacI-tetR BW25113 spr-lacI-tetR cassette derived from DH5a-ZI [62]

BW-NULL pNULL BW-RI Negative control

ZZS00 DryhB BW-RI ryhB deletion from �54 to þ94

ZZS02s DsodB BW-RI sodB deletion from þ1 to þ91

ZZS02q Dhfq BW-RI hfq deletion from þ8 to þ279

ZZS22 pZE12S BW-RI —

ZZS20 DryhB pZE12S ZZS00 —

ZZS23 DryhB pZE12S pZA31R ZZS00 —

ZZS13 DryhB pZE12G pZA31R ZZS00 —

ZZS21 DryhB pZE12S pZA31-luc ZZS00 —

ZZS11 DryhB pZE12G pZA31-luc ZZS00 —

ZZS24 DryhB pZE12S pZA30R ZZS00 —

ZZS22s DsodB pZE12S ZZS02s —

ZZS23q DhfqDryhB pZE12S pZA31R ZZS00, ZZS02q —

ZZS21q DhfqDryhB pZE12S pZA31-luc ZZS00, ZZS02q —

ZZS35 pZE12IS pZA31O BW-RI —

ZZS31 pZE12IS pZA31-luc BW-RI —

ZZS01 DryhB DlacI DlacZY pZA31-luc pZS-In-RI MG 1655 —

ZZS41 DryhB DlacI DlacZY U(crsodB-gfp) pZA31-luc pZS4Int1 MG 1655 —

ZZS43 DryhB DlacI DlacZY U(crsodB-gfp) pZA31-ryhB pZS4Int1 MG 1655 —

pZE12 — — ColE1 ori, Amp marker [62]

pZA31-luc PLTet-O1:luc — p15A ori, Cm marker [62]

pNULL PNULL:gfpmut3b pZE12 Promoterless gfpmut3b - negative control;

pZE12G PLlac-O1: gfpmut3b pZE12

pZE12S PLlac-O1:crsodB-gfpmut3b pZE12 crsodB amplified from þ1 to þ88

pZE12IS PLlac-O1:cris10-gfpmut3b pZE12 cris10 amplified from þ1 to þ36; TC at þ17 changed to GG.

pZA31R PLTet-O1:ryhB pZA31-luc ryhB amplified from þ1 to þ96

pZA31O PLTet-O1:is10out pZA31-luc is10out amplified from þ1 to þ103

pZA30R PryhB:ryhB pZA31-luc PryhB:ryhB amplified from �62 to þ96

pZS4Int1 PlacIq:lacI; PN25:tetR — pSC101 ori, Sp marker [62]

All coordinates are relative toþ1 position of the given gene. See Table S3 for the strain naming scheme.
doi:10.1371/journal.pbio.0050229.t002
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inducers to an initial OD600 of 0.001 and grown in 48-well plates in a
37 8C incubator. OD600 and GFP fluorescence were monitored
periodically (if applicable). When OD600 of these cultures reached
0.3–0.5, approximately 109 cells of each culture were harvested in a
microcentrifuge at 4 8C, treated with 10 mg/ml lysozyme in TE buffer
(pH ¼ 8.0) and total RNA was collected using an Absolutely RNA
miniprep kit (Stratagene; http://www.stratagene.com). The prepared
samples were then treated with Turbo DNA-free DNase (Ambion;
http://www.ambion.com), and PCR controls were performed on each
sample to verify the absence of contaminating DNA. cDNA was
prepared with 1 lg of RNA from each sample using Superscript III
First Strand Synthesis system (Invitrogen; http://www.invitrogen.com).
Dilutions of the resulting samples were then used as the template in
PCR reactions using iQ SYBR Green Supermix (Bio-Rad; http://www.
bio-rad.com) in a Smart Cycler thermal cycler (Cepheid; http://www.
cepheid.com).

To measure expression from a chromosomal target, cells were
grown overnight in minimal media with antibiotics. Cultures were
then diluted to OD600¼ 0.001, and grown in a 12-well plate with 3 ml
of culture in each well, with appropriate antibiotics and inducers. To
determine the growth rate, OD600 was measured every 60 min.
Cultures were grown at 37 8C with constant shaking until they reach
OD600¼ 0.3, at which time 1.7 ml of each culture was spun down and
resuspended in 1 ml phosphate buffer solution (PBS). GFP fluores-
cence was measured using a Becton-Dickinson FACSCalibur flow
cytometer with a 488-nm argon excitation laser and a 515- to 545-nm
emission filter (FL1) at a low flow rate. Photomultiplier tube (PMT)
voltage was set to 950 V, and a linear amplifier was set at 9.53. Forward
scatter and fluorescence values were collected for 50,000 cells.

Data analysis. To obtain gene expression patterns for the different
strains, we averaged (for each time point) the data obtained from the
different repeats for each combination of strain and inducers. First,
the cell doubling rate (l) was obtained as the slope of a linear fit of
log2(OD600) versus time for each strain and condition; this yielded a
doubling time of ;2 h for most strains. Next, for all of the time points
concerning each strain and condition, we plotted the average
fluorescence versus average OD600 on linear-linear plot and extracted
the slope (f). In Figure S2 we show, for example, GFP fluorescence
against OD600 for the ryhB� strain (ZZS21), together with the fitted
slopes. Each slope gave the average fluorescence per growing cell (in
unit of relative fluorescence units (RFU)/OD) for that strain and the
corresponding growth condition. The raw fluorescence production
rate per cell was computed as fl(1þls) [88], upon taking into account
of the maturation kinetics of GFPmut3 (maturation half-life s of ;30
min) [86]. We then subtracted away from this raw rate the background
fluorescence production rate, obtained in the same way from data
collected from our negative control strain BW-NULL. This yielded
the rate of GFP production synthesis from PLlac-O1, and is referred to
as the GFP expression. The results were plotted in Figure S3 at each
IPTG level for different levels of RyhB expression, via the PLtet-O1
promoter controlled by the amount of aTc in the growth medium.

To fit the experimental data with the steady-state solution
(Equation 2), we assume that the GFP expression defined above is
proportional to m, the steady-state mRNA level, i.e., GFP expression¼
bm, where b reflects the rate of GFP translation and maturation. Then,
Equation 2 can be written in the following way,

GFP expression ¼ f ða; as; akÞ

¼ 1
2
ða� as � akÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� as � akÞ2 þ 4aak

q� �
;

where a ¼ bam=b m is the GFP expression in the absence of the sRNA,
referred to as the promoter activity and set by the IPTG concen-
tration, as ¼ bas=b m is proportional to the transcription rate of the
sRNA (and therefore takes different values for different experi-
ments); and ak ¼ bk =b m is proportional to the leakage parameter
(defined in Results). The latter is independent of the sRNA activity,
and should be chosen once for all experiments. We fitted the data to
f(a,aa,ak) using a standard Levenberg-Marquardt algorithm imple-
mented in MATLAB (MathWorks; http://www.mathworks.com), with
the least-square error defined asX

experimentðeÞ

X
½IPTG�

½GFP activity� f ðað½IPTG�Þ; asðeÞ; akÞ�2:

The values of the best-fit parameters obtained are given in Table
S1 in terms of 0.5 confidence intervals.

Estimation of model parameters. The values of the model
parameters can be estimated from various experiments. Consider
first RyhB and its targets [41,42]. In the absence of its targets, the Hfq-

bound sRNA RyhB is very stable, with a half-life of ;30 min [42,49],
yielding bs ; 1/50 min�1. Similarly, from the half-life of ;6 min for
sodB mRNA [42] in the absence of RhyB, we have bm ; 1/10 min�1 .
Moreover, DNA microarray experiments [69,89] indicated approx-
imately 10–20 copies/cell for the sdhCDAB and sodB mRNA in rich
medium (where iron is abundant and RyhB is expected to be
repressed). This suggests a target transcription rate (am) of ; 1 nM/
min in the state where mRNA is expressed. In general, am is
controlled by various cellular signals (e.g., sdhCDAB by Crp-cAMP)
and can typically vary ;10-fold. (The DNA microarray study of Zhang
et al. [69] showed approximately 5-fold change in sdhCDAB and sodB
mRNA levels under various physiological conditions.) On the other
hand, the activity of the RyhB promoter has a broad range, since it is
strongly regulated by Fur-Fe2þ whose concentration can vary over
1000-fold [61]. We model the latter by allowing as to take on the range
from 0.1/min to 10/min. Finally the coupled degradation rate k can
also be deduced from the results of Masse et al. [42] (assuming p of
order 1). Because RyhB is shown to disappear in the presence of its
targets within 3 min, then by using an estimated target mRNA
concentration of 20 nM, we find 1/50 (nMmin)�1, which is close to the
diffusion-limited association rate for typical small proteins [90,91]
and is similar to what has been observed directly for the sRNA OxyS
and its target fhlA [92], as well as for the antisense hok/sok pair [93].

Finally, we consider RNA-OUT and its target, the mRNA of is10in.
RNA-OUT itself is extremely stable, with a half-life dictated by
dilution due to growth bs ; 0.02 min�1 [26], while the half-life of
is10in mRNA is typical to bacterial mRNA (2–3 min, bm ; 0.3 [64]).
Binding of RNA-OUT to its target mRNA is characterized by a
second-order binding constant in the range of k ; 1/50–1/20 (nM
min) �1. The pOUT promoter is a typical promoter, and we assume
that as is not very different from that of RyhB [65]. The pIN promoter,
on the other hand, is atypically weak, and is only enhanced 10-fold
upon methylation [65–67].

Values of the model parameters are summarized in Table 1.

Supporting Information

Figure S1. Model for Indirect Interaction between Different Targets
of a sRNA, in the Case kT � kR
When geneT is not expressed, the sRNA silences the expression of
geneR. When geneT is expressed, most sRNA molecules bind and
degrade with mRNAs of geneT, allowing mRNAs of geneR to be
translated into proteins.

Found at doi:10.1371/journal.pbio.0050229.sg001 (63 KB PDF).

Figure S2. Example for Raw Data, Used to Compile Figure 2A

GFP fluorescence is plotted against OD600 for the RyhB-less strain
(ZZS21) containing the plasmid borne PLlac-O1:crsodB-gfp reporter.
Lines are given by a linear fit. The slope of each line was used to
define the GFP expression.

Found at doi:10.1371/journal.pbio.0050229.sg002 (55 KB PDF).

Figure S3. Example for Raw Data, Used to Compile Figure 2A

GFP expression for strains (ZZS23) harboring PLtet-O1:ryhB on a
plasmid, in addition to the PLlac-O1:crsodB-gfp reporter. The IPTG
dependence of GFP expression (defined from plots such as Figure S2)
is plotted for different degrees of RyhB expression. The latter is
controlled by the level of the inducer aTc in the growth medium as
indicated by the legend.

Found at doi:10.1371/journal.pbio.0050229.sg003 (46 KB PDF).

Figure S4. Repression Strength of RyhB Depends on the Tran-
scription Rate of the Target

The fluorescence levels of cells carrying a plasmid coding for the
target, PLlac�O1:crsodB-gfp, was measured as in Figure 2A, for strains
ZZS21 (no ryhB) and ZZS23 (plasmid-borne ryhB). The fold of
repression (vertical axis) is defined as the ratio between the two.
The repression effect of RyhB is diminished at higher levels of IPTG,
corresponding to higher transcription rates of the target.

Found at doi:10.1371/journal.pbio.0050229.sg004 (45 KB PDF).

Table S1. Best-Fit Parameters of the Data in Figure 2A to Model
(Equation 1), Given in Terms of 50% Confidence Interval

See Material and Methods for a detailed description of the fitting
procedure.

Found at doi:10.1371/journal.pbio.0050229.st001 (13 KB PDF).
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Table S2. Best-Fit Parameters of the Data in Figure 3A to Model
(Equation 1), Given in Terms of 50% Confidence Interval

See Material and Methods for a detailed description of the fitting
procedure.

Found at doi:10.1371/journal.pbio.0050229.st002 (13 KB PDF).

Table S3. Naming Scheme for Strains Used in this Study

Found at doi:10.1371/journal.pbio.0050229.st003 (13 KB PDF).

Text S1. Detailed Description of Models and Derivation of Analytical
Results

Found at doi:10.1371/journal.pbio.0050229.sd001 (120 KB PDF).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) accession num-
bers for the genes and gene products discussed in this paper are ryhB
(GeneID: 2847761), sodB (GeneID: 944953), fumA (GeneID: 2955664), fur
(GeneID: 945295), hfq (GeneID: 948689), oxyS (GeneID: 2847701), micC

(GeneID: 2847713), micF (GeneID: 2847742), rprA (GeneID: 2847671),
dsrA (GeneID: 946470), rpoS (GeneID: 947210), gadY (GeneID: 2847729).
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